SCAS125B - MARCH 1990 - REVISED APRIL 1996

 Members of the Texas Instruments Widebus ™ Family 2 State True Outputs 	74AC16543	WD PACKAGE DL PACKAGE P VIEW)
• 3-State True Outputs	. 	
 Flow-Through Architecture Optimizes 	1OEAB 1 1LEAB 2	
PCB Layout		55] 1 <u>LEBA</u> 54] 1CEBA
Distributed V _{CC} and GND Pin Configuration		53 GND
Minimizes High-Speed Switching Noise		52 1B1
 EPIC ™ (Enhanced-Performance Implanted 	1A1 [] 5	52 1B1 51 1B2
CMOS) 1-µm Process		50 V _{CC}
 500-mA Typical Latch-Up Immunity at 		49 1B3
125°C	1A4 [] 9	48 1B4
 Package Options Include Plastic 300-mil 	1A5 [] 10	
Shrink Small-Outline (DL) Package Using	GND [] 11	46 GND
25-mil Center-to-Center Pin Spacings and	1A6 [12	E
380-mil Fine-Pitch Ceramic Flat (WD)	1A7 13	
Package Using 25-mil Center-to-Center Pin	1A8 🛛 14	E
Spacings	2A1 🛛 15	42 2B1
deseriation	2A2 🚺 16	41 2B2
description	2A3 [17	40 2B3
The 'AC16543 are 16-bit registered transceivers	GND [18	39 🛛 GND
that contain two sets of D-type latches for	2A4 [19	38 🛛 2B4
temporary storage of data flowing in either	2A5 🛛 20	37 🛛 2B5
direction. They can be used as two 8-bit	2A6 🛛 21	
transceivers or one 16-bit transceiver. Separate	V _{CC} 22	E 00
latch-enable (LEAB or LEBA) and output-enable	2A7 23	
(OEAB or OEBA) inputs are provided for each	2A8 24	
register to permit independent control in either	<u>GND</u> 25	· · · ·
direction of data flow.	2 CEAB 26	31 2CEBA

The A-to-B enable (CEAB) input must be low to enter data from A or to output data to B. Having

CEAB low and LEAB low makes the A-to-B latches transparent; a subsequent low-to-high transition at LEAB puts the A latches in the storage mode. Data flow from B to A is similar, but requires using the \overline{CEBA} , \overline{LEBA} , and OEBA inputs.

2LEAB 27

20EAB 28

30 2LEBA

29 20EBA

The 74AC16543 is packaged in TI's shrink small-outline package, which provides twice the I/O pin count and functionality of standard small-outline packages in the same printed-circuit-board area.

The 54AC16543 is characterized for operation over the full military temperature range of -55°C to 125°C. The 74AC16543 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

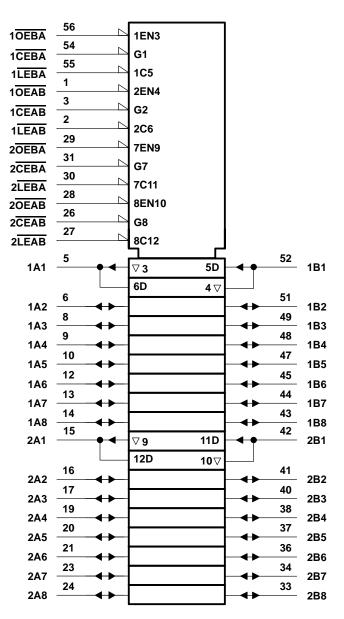
UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters

Copyright © 1996, Texas Instruments Incorporated

54AC16543, 74AC16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCAS125B – MARCH 1990 – REVISED APRIL 1996

FUNCTION TABLE[†] (each 8-bit section)

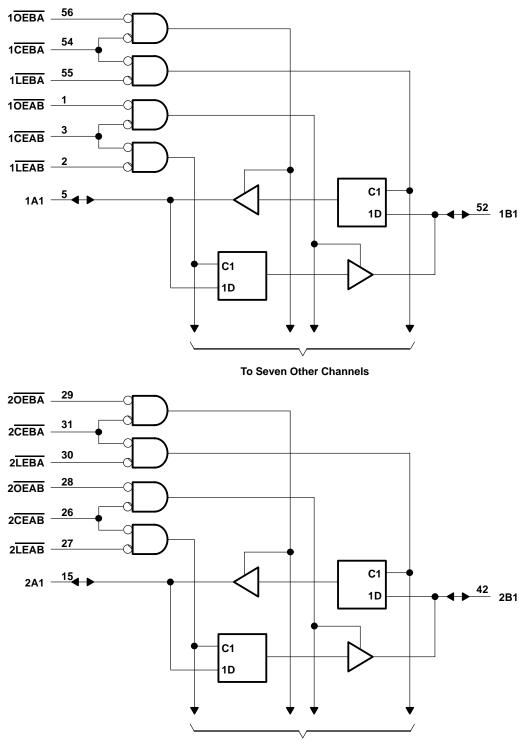
	INPU	OUTPUT									
CEAB	LEAB	OEAB	Α	В							
Н	Х	Х	Х	Z							
Х	Х	Н	Х	Z							
L	Н	L	Х	в ₀ ‡							
L	L	L	L	L							
L	L	L	Н	Н							


[†] A-to-B data flow is shown; <u>B-to-A flow control is</u> the same except that it uses CEBA, LEBA, and OEBA.
[‡] Output level before the indicated steady-state input

conditions were established

SCAS125B - MARCH 1990 - REVISED APRIL 1996

logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

54AC16543, 74AC16543 16-BIT REGISTERED TRANSCEIVERS WITH 3-STATE OUTPUTS SCAS125B – MARCH 1990 – REVISED APRIL 1996

logic diagram (positive logic)

To Seven Other Channels

SCAS125B - MARCH 1990 - REVISED APRIL 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC}	V _{CC} + 0.5 V V _{CC} + 0.5 V ±20 mA ±50 mA ±50 mA ±400 mA 1.4 W
Storage temperature range, T_{stg}	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

recommended operating conditions (see Note 3)

			54	AC1654	3	74	AC1654	3	LINUT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	3	5	5.5	V
		V _{CC} = 3 V	2.1			2.1			
VIH	High-level input voltage	$V_{CC} = 4.5 V$	3.15			3.15			V
		V _{CC} = 5.5 V	3.85			3.85			
	Low-level input voltage	$V_{CC} = 3 V$			0.9			0.9	
VIL		$V_{CC} = 4.5 V$		4	1.35			1.35	V
		V _{CC} = 5.5 V		EL	1.65			1.65	
VI	Input voltage		0	24	VCC	0		VCC	V
VO	Output voltage		0	5	VCC	0		VCC	V
		$V_{CC} = 3 V$	40	2	-4			-4	
ЮН	High-level output current	$V_{CC} = 4.5 V$	PP C		-24			-24	mA
		V _{CC} = 5.5 V	4		-24			-24	
		$V_{CC} = 3 V$			12			12	
IOL	Low-level output current	V _{CC} = 4.5 V			24			24	mA
		V _{CC} = 5.5 V			24			24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0		10	0		10	ns/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

SCAS125B – MARCH 1990 – REVISED APRIL 1996

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DA	DAMETED			T/	A = 25°C	;	54AC1	6543	74AC16543		UNIT			
FA	RAMETER	TEST CONDITIONS	Vcc	MIN	ТҮР	MAX	MIN	MAX	MIN	MAX	UNIT			
			3 V	2.9			2.9		2.9					
		I _{OH} = -50 μA	4.5 V	4.4			4.4		4.4					
			5.5 V	5.4			5.4		5.4					
VOH	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		2.48		V				
		4.5 V	3.94			3.8	W	3.8						
		I _{OL} = -24 mA	5.5 V	4.94			4.8	VIE	4.8					
		$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85	RE	3.85					
			3 V			0.1	7	0.1		0.1	0.1 0.1 0.44 V			
		l _{OL} = 50 μA	4.5 V			0.1	$\mathcal{D}_{\mathcal{D}}$	0.1		0.1				
			5.5 V			0.1	202	0.1		0.1				
VOL		I _{OL} = 12 mA	3 V			0.36	4	0.44		0.44				
		lo: - 24 mA	4.5 V			0.36		0.44		0.44				
		I _{OL} = 24 mA	5.5 V			0.36		0.44		0.44				
		$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65		1.65				
lj	Control inputs	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μA			
IOZ	A or B ports	$V_{O} = V_{CC}$ or GND	5.5 V			±0.5		±5		±5	μA			
ICC		$V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$	5.5 V			8		80		80	μA			
Ci	Control inputs	$V_I = V_{CC}$ or GND	5 V		3						pF			
Cio	A or B ports	$V_{O} = V_{CC}$ or GND	5 V		11.5						pF			

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

		T _A = 2	T _A = 25°C		54AC16543		74AC16543	
		MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tw	Pulse duration, LEAB or LEBA low	5		5	1. C	5		ns
t _{su}	Setup time, data before LEAB or LEBA ↑	1		(D)	JIK I	1		ns
th	Hold time, data after \overline{LEAB} or \overline{LEBA}	3.5		3.5		3.5		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

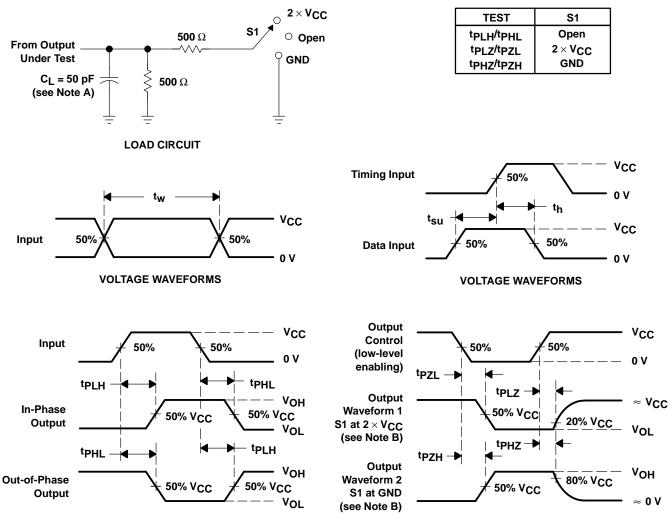
		T _A =	T _A = 25°C		= 25°C 54AC16543		74AC16543		UNIT
			MAX	MIN	MAX	MIN	MAX	UNIT	
tw	Pulse duration, LEAB or LEBA low	4		4 50		4		ns	
t _{su}	Setup time, data before LEAB or LEBA ↑	1		D O	UIF.	1		ns	
t _h	Hold time, data after \overline{LEAB} or \overline{LEBA}	3		3		3		ns	

SCAS125B - MARCH 1990 - REVISED APRIL 1996

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

00			_							
PARAMETER	FROM	то	Т	4 = 25°C	;	54AC1	6543	74AC1	6543	UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	A or B	B or A	3.2	8.6	12.5	3.2	13.9	3.2	13.9	ns
^t PLH		A or LEAB A or B	4.6	11.8	16	4.6	18	4.6	18	~~
^t PHL	LEBA or LEAB	AUB	4.6	11.3	15.4	4.6	16.8	4.6	16.8	ns
^t PZH	CEBA or CEAB	A or B	3.7	10	14	3.7	15.8	3.7	15.8	ns
^t PZL			4.6	12.7	17.7	4.6	19.8	4.6	19.8	
^t PHZ	CEBA or CEAB	A or B	4.7	7.8	10.1	4.7	10.8	4.7	10.8	ns
^t PLZ	CEBA OF CEAB		4.3	7.3	9.7	4,3	10.4	4.3	10.4	
^t PZH	OEBA or OEAB	A or B	3.5	9.7	13.9	3.5	15.7	3.5	15.7	
^t PZL	OEBA OF OEAB	A or B	4.5	12.5	17.6	4 .5	19.7	4.5	19.7	ns
^t PHZ	OEBA or OEAB	EBA or OEAB A or B	4.8	7.5	9.6	4.8	10.2	4.8	10.2	ns
^t PLZ		AUB	4.1	6.8	9.2	4.1	9.8	4.1	9.8	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


	FROM	то	Т	ן = 25°C	;	54AC1	6543	74AC1	6543	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
^t PLH	A or B	B or A	2.7	5.2	7.8	2.7	8.8	2.7	8.8	ns
^t PHL	AUD	BUIA	2.9	5.5	8.3	2.9	9.2	2.9	9.2	115
^t PLH	LEBA or LEAB	A or B	3.9	7	10.2	3.9	11.5	3.9	11.5	ns
^t PHL	LEBA or LEAB	AOIB	3.7	6.7	9.9	3.7	10.9	3.7	10.9	115
^t PZH	CEBA or CEAB	AB A or B	3	5.8	8.7	3	9.8	3	9.8	ns
^t PZL			3.6	6.7	10.3	3.6	2 11.5	3.6	11.5	
^t PHZ	CEBA or CEAB	A or B	4.2	6.5	8.7	4.2	9.3	4.2	9.3	3 ns
^t PLZ	CEBA OF CEAB	AOIB	4	5.9	8.2	102	8.8	4	8.8	115
^t PZH		A or B	2.9	5.6	8.5	2.9	9.6	2.9	9.6	ns
^t PZL	OEBA or OEAB	A or B	3.5	6.6	10.2	3.5	11.3	3.5	11.3	115
^t PHZ	OEBA or OEAB	EAB A or B	4.2	6.3	8.4	4.2	8.9	4.2	8.9	ns
^t PLZ		AUB	3.7	5.6	7.9	3.7	8.4	3.7	8.4	115

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER			TEST CON	TYP	UNIT
C _{pd} Power dissipation capacitance per transceiver	Outputs enabled	$C_1 = 50 \text{pF}$	f = 1 MHz	53	۳E
	Outputs disabled	CL = 50 pF,		11	рF

SCAS125B - MARCH 1990 - REVISED APRIL 1996

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS NOTES: A. CL includes probe and jig capacitance.

VOLTAGE WAVEFORMS

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.

D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated