SCAS115 – D3458, MARCH 1990 – REVISED APRIL 1993

 Inputs Are TTL-Voltage Compatible Independent Registers A and B Buses 		VIEW)
 Multiplexed Real-Time and Stored Data 	G	
Inverting Data Paths	A1 🛛 2	27 SAB
• Flow-Through Architecture to Optimize	A2 🛛 3	26 🛛 B1
PCB Layout	A3 🛛 4	25 B2
 Center-Pin V_{CC} and GND Configurations 	A4 🛛 5	24 🛛 B3
Minimize High-Speed Switching Noise	GND 🛛 6	23 B4
 EPIC[™] (Enhanced-Performance Implanted 	GND 7	22 VCC
CMOS) 1-µm Process		²¹ V _{CC}
	GND [] 9	20 B5
 500-mA Typical Latch-Up Immunity at 125°C 	A5 🛛 10	19 🛛 B6
at 125°C	A6 🛛 11	18 B7
description	A7 🛛 12	17 B8
acoultan	A8 🛛 13	16 CBA
The 74ACT11648 consists of bus transceiver	DIR 🛛 14	¹⁵] SBA
circuits with 3-state outputs, D-type flip-flops, and		

mission of data directly from the data bus or from the internal storage registers. Data on the A or B bus will be clocked into the registers on the low-to-high transition of the appropriate clock pin (CAB or CBA). Examples of the four fundamental bus-management functions that can be performed with the octal bus transceivers and registers are shown in Figure 1.

Enable (\overline{G}) and direction (DIR) pins are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both. The select controls (SAB and SBA) can multiplex stored and real-time (transparent mode) data. The circuitry used for select control will eliminate the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. The direction control determines which bus will receive data when enable \overline{G} is active (low). In the isolation mode (control \overline{G} high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

The 74ACT11648 is characterized for operation from -40° C to 85° C.

control circuitry arranged for multiplexed trans-

EPIC is a trademark of Texas Instruments Incorporated.

SCAS115 - D3458, MARCH 1990 - REVISED APRIL 1993

L	L	Х	Х	Х	L						
G	DIR	CAB	CBA	SAB	SBA						

1

1

REAL-TIME TRANSFER BUS B TO BUS A

G	DIR	CAB	CBA	SAB	SBA
Х	х	\uparrow	х	х	Х
Х	Х	Х	\uparrow	х	Х
н	х	Ŷ	\uparrow	Х	Х
	x ↑ x x x ↑		A AND B		

REAL-TIME TRANSFER BUS A TO BUS B

1	14	28	16	27	15
G	DIR	CAB	CBA	SAB	SBA
L	L	Х	H or L	Х	Н
L	Н	H or L	Х	Н	Х

TRANSFER STORED DATA TO A OR B

Figure 1. Bus-Management Functions

74ACT11648 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS SCAS115 – D3458, MARCH 1990 – REVISED APRIL 1993

	FUNCTION TABLE												
		INPUTS		DAT	a I/O	OPERATION OR FUNCTION							
G	DIR	CAB	СВА	SAB	SBA	A1 THRU A8	B1 THRU B8	OFERATION OR FUNCTION					
Х	Х	\uparrow	Х	Х	Х	Input	Unspecified [†]	Store A, B unspecified [†]					
Х	Х	Х	\uparrow	Х	х	Unspecified [†]	Input	Store B, A unspecified [†]					
н	Х	\uparrow	\uparrow	Х	х	Input	Input	Store A and B Data					
н	Х	H or L	H or L	Х	х	Input	Input	Isolation, hold storage					
L	L	Х	Х	Х	L	Output	Input	Real-Time B Data to A Bus					
L	L	Х	H or L	Х	н	Output	Input	Stored B Data to A Bus					
L	Н	Х	Х	L	Х	Input	Output	Real-Time \overline{A} Data to B Bus					
L	Н	H or L	Х	Н	Х	Input	Output	Stored A Data to B Bus					

[†] The data output functions may be enabled or disabled by various signals at the G and DIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

logic symbol[‡]

logic diagram (positive logic)

[‡]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCAS115 - D3458, MARCH 1990 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$\dots \dots \dots - 0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, V _O (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	$\dots \dots \pm 20 \text{ mA}$
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC})	$\dots \dots \pm 50 \text{ mA}$
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	$\dots \dots \pm 50 \text{ mA}$
Continuous current through V _{CC} or GND	± 200 mA
Storage temperature range	– 65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
V_{IL}	Low-level input voltage			0.8	V
\vee_{I}	Input voltage	0		VCC	V
VO	Output voltage	0		VCC	V
ЮН	High-level output current			-24	mA
IOL	Low-level output current			24	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	0		10	ns/V
Т _А	Operating free-air temperature	-40		85	°C

SCAS115 - D3458, MARCH 1990 - REVISED APRIL 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	N	Т	4 = 25°C	;	MAINI	MAX	
FA	RAMEIER	TEST CONDITIONS	vcc	CC MIN	TYP	MAX	MIN	MAX	UNIT
			4.5 V	4.4			4.4		
		I _{OH} = - 50 μA	5.5 V	5.4			5.4		
VOH		1011 - 24 mA	4.5 V	3.94			3.8		V
		I _{OH} = – 24 mA	5.5 V	4.94			4.8		
		I _{OH} = – 75 mA [†]	5.5 V				3.85		
		101 - 50 114	4.5 V			0.1		0.1	
		I _{OL} = 50 μA	5.5 V			0.1		0.1	
VOL		lo: - 24 mA	4.5 V			0.36		0.44	V
		I _{OL} = 24 mA	5.5 V			0.36		0.44	
		$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
կ	Control Inputs	$V_{I} = V_{CC}$ or GND	5.5 V			± 0.1		± 1	μA
I _{OZ}	A or B ports‡	$V_{I} = V_{CC}$ or GND	5.5 V			± 0.5		±5	μΑ
ICC		$V_{I} = V_{CC} \text{ or } GND, I_{O} = 0$	5.5 V			8		80	μA
∆I _{CC} §		One input at 3.4 V, Other inputs at GND or V_{CC}	5.5 V			0.9		1	mA
Ci	Control Inputs	$V_I = V_{CC}$ or GND	5 V		4.5				۶E
Cio	A or B ports	$V_I = V_{CC}$ or GND	5 V		12				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡] For I/O ports, the parameter I_{OZ} includes the input leakage current.

§ This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

timing requirements over recommended range of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 2)

		T _A = 2	25°C	MIN	МАХ	UNIT
		MIN	MAX	WIIIN		UNIT
fclock	Clock frequency	0	90	0	75	MHz
tw	Pulse duration, CAB or CBA high or low	6.7		6.7		ns
t _{su}	Setup time, A before CAB↑ or B before CBA↑	5		5		ns
th	Hold time, A after CAB \uparrow or B after CBA \uparrow	2		2		ns

SCAS115 - D3458, MARCH 1990 - REVISED APRIL 1993

switching characteristics over recommended ranges of supply voltage operating free-air temperature (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	Т	ຊ = 25 °C	;	MIN	МАХ	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVITIN	WAA	UNIT
fmax			75			75		MHz
^t PLH	A or B	B or A	2.4	6.5	9.5	2.4	10.7	ns
^t PHL	A OF B	BUR	4.4	8.5	11.3	4.4	12.7	115
^t PZH	G	A or B	4.2	9.2	13	4.2	14.6	ns
^t PZL	G	AUB	4.3	9.8	13.9	4.3	15.6	115
^t PHZ	G	A or B	5.7	8.7	11.3	5.7	12.2	ns
^t PLZ	G	AUB	5.3	8.1	10.5	5.3	11.4	115
^t PLH	CBA or CAB	A or B	5.2	9.4	12	5.2	13.7	ns
^t PHL		AUB	6	10.5	13.5	6	15.2	115
^t PLH	SAB or SBA [†]	A or B	4.7	8.6	11.3	4.7	12.9	ns
^t PHL	(with A or B high)	AUB	3.8	8.6	12	3.8	13.4	115
^t PLH	SBA or SAB [†]	A or B	2.6	7.1	10.2	2.6	11.5	ns
^t PHL	(with A or B low)	AUB	5.4	9.7	12.6	5.4	14.1	115
^t PZH	PIP	A or B	3.9	9.8	14.9	3.9	16.9	
^t PZL	DIR	AOLP	3.9	10.8	15.1	3.9	17.2	ns
^t PHZ	DIR	A or B	4.5	8.2	10.6	4.5	11.5	ns
^t PLZ	DIK	AUB	3.9	7.3	9.6	3.9	11.3	ns

[†] These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CON	ТҮР	UNIT	
C _{pd} Power dissipation capacitance per transceivers	Outputs enabled		f = 1 MHz	61	۶F
	rower dissipation capacitance per transceivers	Outputs disabled	C _L = 50 pF,		15

SCAS115 - D3458, MARCH 1990 - REVISED APRIL 1993

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CI includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f = 3 ns, t_f = 3 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. D. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated