	OCTAL BUS TRANSCEIVER AND REGIS WITH 3-STATE OUT SCAS114 – MARCH 1990 – REVISED AP
 Independent Registers for A and B Buses Multiplexed Real-Time and Stored Data 	DW OR NT PACKAGE (TOP VIEW)
 Inverting Data Paths Flow-Through Architecture Optimizes PCB Layout 	OE 1 28 CLKAB A1 2 27 SAB A2 3 26 B1 A3 4 25 B2
 Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise <i>EPIC</i>[™] (Enhanced-Performance Implanted CMOS) 1-μm Process 	A4 [5 24] B3 GND [6 23] B4 GND [7 22] V _{CC}
 500-mA Typical Latch-Up Immunity at 125°C Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs 	GND 8 21 V _{CC} GND 9 20 B5 A5 10 19 B6 A6 11 18 B7 A7 12 17 B8 A8 12 16 CLKBA
description	A8 13 16 CLKBA DIR 14 15 SBA

The 74AC11648 consists of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal

registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 74AC11648.

Output-enable (\overline{OE}) and direction-control (DIR) inputs are provided to control the transceiver functions. In the transceiver mode, data present at the high-impedance port may be stored in either register or in both.

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. The direction control (DIR) determines which bus will receive data when \overline{OE} is low. In the isolation mode (\overline{OE} high), A data may be stored in one register and/or B data may be stored in the other register.

When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time.

The 74AC11648 is characterized for operation from -40° C to 85° C.

EPIC is a trademark of Texas Instruments Incorporated.

74AC11648

PRIL 1993

SCAS114 - MARCH 1990 - REVISED APRIL 1993

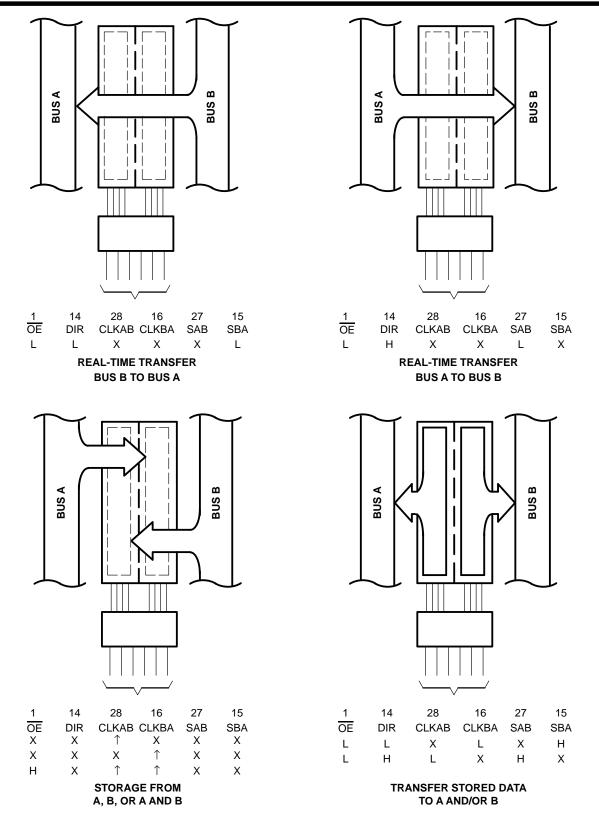
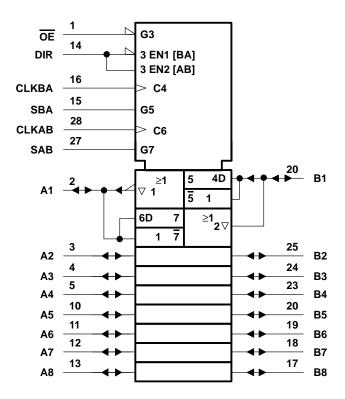


Figure 1. Bus-Management Functions

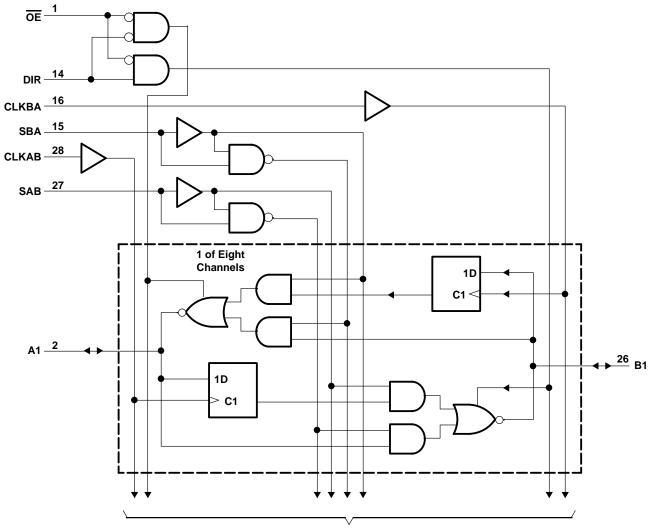


74AC11648 **OCTAL BUS TRANSCEIVER AND REGISTER** WITH 3-STATE OUTPUTS SCAS114 – MARCH 1990 – REVISED APRIL 1993

	FUNCTION TABLE										
		INP	UTS			DAT	A I/O				
OE	DIR	CLKAB	CLKBA	SAB	SBA	A1 THRU A8 B1 THRU B8		OPERATION OR FUNCTION			
Х	Х	\uparrow	Х	Х	Х	Input	Unspecified [†]	Store A, B unspecified [†]			
Х	Х	Х	\uparrow	Х	Х	Unspecified [†]	Input	Store B, A unspecified [†]			
Н	Х	Ŷ	\uparrow	Х	Х	Input	Input	Store A and B data			
н	Х	L	L	Х	Х	Input disabled	Input disabled	Isolation, hold storage			
L	L	Х	Х	Х	L	Output	Input	Real-time \overline{B} data to A bus			
L	L	Х	L	Х	Н	Output	Input	Stored \overline{B} data to A bus			
L	Н	Х	Х	L	Х	Input	Output	Real-time \overline{A} data to B bus			
L	Н	L	Х	Н	Х	Input	Output	Stored A data to B bus			

[†] The data output functions may be enabled or disabled by various signals at the OE and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every low-to-high transition of the clock inputs.

logic symbol[‡]



[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SCAS114 - MARCH 1990 - REVISED APRIL 1993

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)	-0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC})	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$)	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±200 mA
Storage temperature range	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

74AC11648 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS SCAS114 – MARCH 1990 – REVISED APRIL 1993

recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	V
		$V_{CC} = 3 V$	2.1			
V _{CC} V _{IH} V _{IL} V _I V _O	High-level input voltage	V _{CC} = 4.5 V	3.15			V
		V _{CC} = 5.5 V	3.85			
		$V_{CC} = 3 V$			0.9	
VIL	Low-level input voltage	V _{CC} = 4.5 V			1.35	V
		V _{CC} = 5.5 V			1.65	
VI	Input voltage		0		VCC	V
VO	Output voltage		0		VCC	V
		V _{CC} = 3 V			-4	
VIH VIL VI VO IOH IOL Δt/Δv	High-level output current	V _{CC} = 4.5 V			-24	mA
		V _{CC} = 5.5 V			-24	
		$V_{CC} = 3 V$			12	
IOL	Low-level output current	V _{CC} = 4.5 V			24	mA
		V _{CC} = 5.5 V			24	
$\Delta t/\Delta v$	Input transition rise or fall rate		0		10	ns/V
TA	Operating free-air temperature		-40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

ВА	DAMETED	TEST CONDITIONS	Vaa	T _A = 25°C			MIN	MAY	UNIT
PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	WIIN	MAX	UNIT	
			3 V	2.9			2.9		
	I _{OH} = - 50 μA	4.5 V	4.4			4.4			
			5.5 V	5.4			5.4		
VOH		$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
			4.5 V	3.94			3.8		
		I _{OH} = – 24 mA	5.5 V	4.94			4.8		
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85			
			3 V			0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1	v	
		5.5 V			0.1		0.1		
VOL		I _{OL} = 12 mA	3 V			0.36	0.44		
		la. 34 mA	4.5 V			0.36		0.44	
		I _{OL} = 24 mA	5.5 V			0.36		0.44	
		I _{OL} = 75 mA [†]	5.5 V					1.65	
Ц	Control inputs	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μA
loz‡	A or B ports	$V_{O} = V_{CC}$ or GND	5.5 V			±0.5		±5	μΑ
ICC		$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			8		80	μA
Ci	Control inputs	$V_I = V_{CC}$ or GND	5 V		4.5				pF
Cio	A or B ports	$V_{O} = V_{CC}$ or GND	5 V		12				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

 \ddagger For I/O ports, the parameter I_{OZ} includes the input leakage current.

SCAS114 - MARCH 1990 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

		T _A = 2	T _A = 25°C		мах	UNIT
		MIN	MAX	MIN		UNIT
fclock	Clock frequency	0	40	0	40	MHz
tw	Pulse duration, CLK high or low	12.5		12.5		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	6.5		6.5		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑	0		0		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

		T _A = 2	T _A = 25°C		МАХ	UNIT
		MIN	MAX	MIN	WAA	UNIT
fclock	Clock frequency	0	90	0	90	MHz
tw	Pulse duration, CLK high or low	5.6		5.6		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	4.5		4.5		ns
th	Hold time, A or B after CLKAB↑ or CLKBA↑	1		1		ns

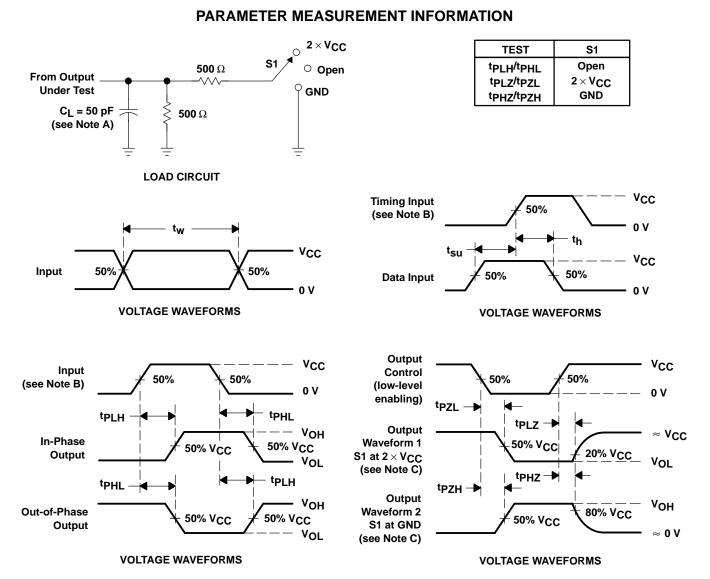
switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	Т	₄ = 25° Ω	;	MIN	мах	UNIT
FARAINETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX		IVIAA	UNIT
fmax			40			40		MHz
^t PLH	A or B	B or A	3	8.7	12.6	3	14.3	ns
^t PHL	AUD	BOIA	3.8	9.3	14.4	3.8	15.9	115
^t PZH		A or B	5	11.1	17.2	5	19.4	ns
^t PZL	UE	AUD	5.2	12.8	20.5	5.2	23	115
^t PHZ		A or B	4.1	7.2	9.9	4.1	10.6	ns
^t PLZ	ÛE	AUB	3.7	6.5	9.1	3.7	9.7	115
^t PLH	CLKBA or CLKAB	A or B	4.3	10.1	15.6	4.3	17.6	ns
^t PHL		AUB	5.2	11.5	17.6	5.2	19.4	115
^t PLH	SBA or SAB [†]	A or B	3.7	9.1	14.1	3.7	15.8	ns
^t PHL	(A or B high)	AUB	4.5	10.3	15.9	4.5	17.4	115
^t PLH	SBA or SAB [†]	A or B	3.2	8.6	13.6	3.2	15.3	ns
^t PHL	(A or B low)	AUB	4.6	10.3	15.6	4.6	17.1	115
^t PZH	DIR	A or B	4.9	11.6	18.2	4.9	20.6	ns
^t PZL	אוט	AOLP	5.2	14.2	21.6	5.2	24.3	115
^t PHZ	DIR	A or B	3.8	7.1	10.1	3.8	10.9	ns

[†] These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

74AC11648 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS SCAS114 – MARCH 1990 – REVISED APRIL 1993

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)


	FROM	то	Т	₄ = 25°C	`	MIN	МАХ	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN	IVIAA	UNIT
f _{max}			90			90		MHz
^t PLH	A or B	B or A	2.6	5.6	8.3	2.6	9.5	ns
^t PHL	AOID	BUR	3.2	6.4	9.4	3.2	10.6	115
^t PZH	ŌĒ	A or B	4.2	7.8	11.3	4.2	12.8	ns
^t PZL		AUB	4.1	8.1	12	4.1	13.6	115
^t PHZ	ŌĒ	A or B	3.8	6.3	8.6	3.8	9.2	ns
^t PLZ		AUB	3.5	5.7	7.8	3.5	8.4	115
^t PLH	CLKBA or CLKAB	A or B	3.6	6.9	10	3.6	11.4	ns
^t PHL		AUB	4.3	8	11.4	4.3	12.8	115
^t PLH	SBA or SAB [†]	A or B	3.1	6.2	9.2	3.1	10.4	ns
^t PHL	(A or B high)	AUD	3.8	7.6	10.4	3.8	11.6	115
^t PLH	SBA or SAB [†]	A or B	2.8	6.1	8.9	2.8	10.1	ns
^t PHL	(A or B low)	AUB	3.8	7.3	10.4	3.8	11.6	115
^t PZH	DIR	A or B	4	8	11.9	4	13.4	ns
^t PZL	DIR		4.1	8.4	12.7	4.1	14.4	115
^t PHZ	DIR	A or B	3.5	6.1	8.5	3.5	9.1	ns
^t PLZ	BIR		3.4	5.9	7.8	3.4	8.4	115

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER			TEST CON	TYP	UNIT	
C _{pd}	Power dissinction conscitance per transaciver	Outputs enabled	$C_{\rm L} = 50 \rm pE$	f = 1 MHz	66	pF
	Power dissipation capacitance per transceiver	Outputs disabled	C _L = 50 pF,		17	рг

SCAS114 - MARCH 1990 - REVISED APRIL 1993

NOTES: A. CI includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_r = 3 ns, t_f = 3 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. D. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated