SCAS101 - D3420, FEBRUARY 1990 - REVISED APRIL 1993

- Contains Eight D-Type Flip-Flops
- Clock Enable Latched to Avoid False Clocking
- Applications Include: Buffer/Storage Registers, Shift Registers, Pattern Generators
- Flow-Through Architecture Optimizes
 PCB Layout
- Center-Pin V_{CC} and GND Configuration Minimizes High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-µm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small Outline Packages and Standard Plastic 300-mil DIPs

(TOP VIEW)									
1Q [1	U	24	CLKEN					
2Q [2		23	1D					
3Q [3		22] 2D					
4Q [4		21] 3D					
GND [5		20] 4D					
GND [6		19] v _{cc}					
GND [7		18] v _{cc}					
GND [8		17] 5D					
5Q [9		16] 6D					
6Q [10		15] 7D					
7Q [11		14] 8D					
8Q [12		13] CLK					

DW OR NT PACKAGE

description

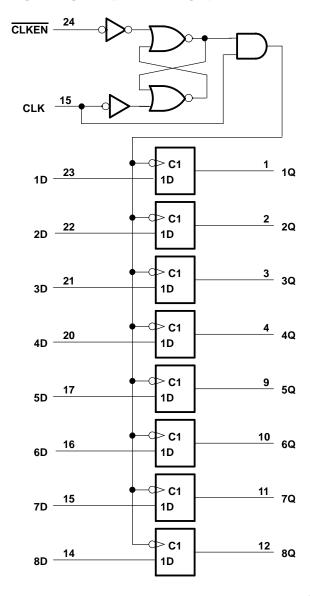
These circuits are positive-edge-triggered D-type flip-flops with a clock enable input.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse if $\overline{\text{CLKEN}}$ is low. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output. The circuits are designed to prevent false clocking by transitions at the $\overline{\text{CLKEN}}$ input.

The 74AC11377 is characterized for operation from -40° C to 85°C.

FUNCTION TABLE (each flip-flop)

IN	IPUTS	UTS OUT					
CLKEN	CLK	D	Q				
Н	Х	Х	Q_0				
L	\uparrow	Н	Н				
L	\uparrow	L	L				
Х	L	Χ	Q_0				


EPIC is a trademark of Texas Instruments Incorporated.

logic symbol†

CLKEN	24	G1]	
	13			
CLK		≥ 1C2		
	23		1	
1D		2D		1Q
2D	22		2	2Q
	21		3	
3D	20		4	3Q
4D	20		4	4Q
	17		9	
5D	16		10	5Q
6D				6Q
7D	15		11	7Q
	14		12	
8D				8Q
			,	

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	– 0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, VO (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	± 20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	$\dots \dots \pm 50 \text{ mA}$
Continuous current through V _{CC} or GND	± 200 mA
Storage temperature range	– 65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		3	5	5.5	V
		V _{CC} = 3 V	2.1			
VIH	High-level input voltage	$V_{CC} = 4.5 \text{ V}$	3.15			V
		V _{CC} = 5.5 V	3.85			
		V _{CC} = 3 V			0.9	
V _{IL}	Low-level input voltage	$V_{CC} = 4.5 \text{ V}$			1.35	V
		V _{CC} = 5.5 V			1.65	
٧ _I	Input voltage		0		VCC	V
٧o	Output voltage		0		Vcc	V
		V _{CC} = 3 V			- 4	
ЮН	High-level output current	V _{CC} = 4.5 V			- 24	mA
		V _{CC} = 5.5 V			-24	
		V _{CC} = 3 V			12	
lOL	Low-level output current	V _{CC} = 4.5 V			24	mA
		V _{CC} = 5.5 V			24	
Δt/Δν	Input transition rise or fall rate	-	0		10	ns/V
TA	Operating free-air temperature		- 40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	V	T _A = 25°C					LINUT
PARAMETER		\ vcc	MIN	TYP	MAX	MIN	MAX	UNII
	I _{OH} = - 50 μA	3 V	2.9			2.9		
		4.5 V	4.4			4.4		
		5.5 V	5.4	MIN TYP MAX 2.9 4.4 4.4 5.4 5.4 5.4 5.5 5.5 5.4 5.5 5.4 5.5 5.4 5.5				
Vон	$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48	0.1 0.1 0.1 0.44 0.44	V
	Jan - 24 mA	4.5 V	MIN TYP MAX MIN MAX UN 3 V 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.2					
	I _{OH} = -24 mA	5.5 V	4.94			4.8		1
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85	0.1 0.1 0.44 0.44 1.65 ± 1	
	I _{OL} = 50 μA	3 V			0.1		0.1	
		4.5 V			0.1		0.1	
		5.5 V			0.1		0.1	
V_{OL}	I _{OL} = 12 mA	3 V			0.36		0.44	V
	lo: - 24 mA	4.5 V			0.36		0.44	
	I _{OL} = 24 mA	5.5 V			0.36		0.44	
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
II	V _I = V _{CC} or GND	5.5 V			± 0.1		± 1	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ
Ci	V _I = V _{CC} or GND	5 V		4				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

SCAS101 - D3420, FEBRUARY 1990 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

				T _A = 25°C		MAX	UNIT
			MIN	MAX	MIN	IVIAA	UNIT
fclock	f _{clock} Clock frequency		0	60	0	60	MHz
t _W Pulse duration	Pulso duration	CLK high	5		5		ns
	Pulse duration	CLK low	5		5		115
		Data high	6		6		
١.	Setup time before CLK↑	Data low	5		5		ns
t _{su}	Setup time before CLK	CLKEN high	9		9		115
		CLKEN low	9		9		
th	Hold time after CLK↑	CLKEN inactive or active, data	0		0		ns

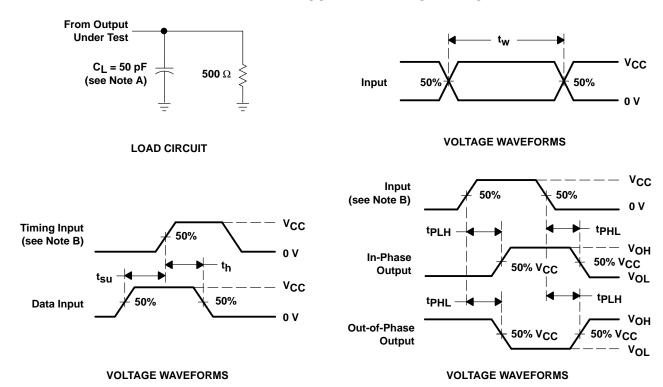
timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			$T_A = 2$	25°C	MIN	MAX	UNIT
			MIN MAX		IVIIIV	WAX	UNII
f _{clock}	Clock frequency		0	100	0	100	MHz
t _W Pulse duration	Dulae duration	CLK high	5		5		20
	Pulse duration	CLK low	5		5		ns
		Data high or low	4		4		
t _{su}	Setup time before CLK↑	CLKEN high	6		6		ns
		CLKEN low	6		6		
th	Hold time after CLK↑	CLKEN inactive or active, data	0		0		ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T,	չ = 25°C	;	MIN	MAX	UNIT
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIN	IVIAA	ONIT
f _{max}			60			60		MHz
^t PLH	CLK	Any	4	9.8	15.7	4	17.9	ns
^t PHL		Any Q	4.9	11.4	18	4.9	19.9	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	TO (OUTPUT)	T _A = 25°C			MIN	MAX	UNIT
PARAMETER	(INPUT)		MIN	TYP	MAX	IVIIIV	IVIAA	UNIT
f _{max}			100			100		MHz
t _{PLH}	CLK	Any O	3.3	6.6	9.9	3.3	11.3	ns
^t PHL		Any Q	4.1	7.8	11.5	4.1	12.9	110

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	$C_L = 50 \text{ pF}, \qquad f = 1 \text{ MHz}$	72	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated