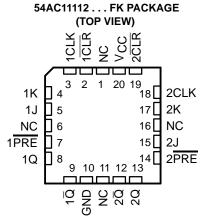

SCAS073A - JUNE 1989 - REVISED APRIL 1993


- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configuration Minimizes High-Speed Switching Noise
- EPIC[™] (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- ESD Protection Exceeds 2000 V, MIL STD-883C Method 3015
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

description

These devices contain two independent J-K negative-edge-triggered flip-flops. A low level at the preset (PRE) or clear (CLR) inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the negative-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the fall time of the clock pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. These versatile flip-flops can perform as toggle flip-flops by tying J and K high.

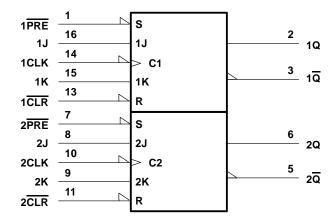
54AC11112 . . . J PACKAGE 74AC11112 . . . D OR N PACKAGE (TOP VIEW)

NC - No internal connection

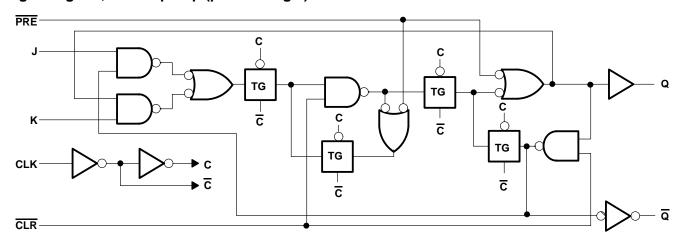
The 54AC11112 is characterized for operation over the full military temperature range of -55° C to 125° C. The 74AC11112 is characterized for operation from -40° C to 85° C.

FUNCTION TABLE (each gate)

		OUTI	PUTS			
PRE	CLR	CLK	J	K	Q	Q
L	Н	Х	Χ	Χ	Н	L
Н	L	X	Χ	X	L	Н
L	L	X	Χ	X	н†	H [†]
Н	Н	\downarrow	L	L	QO	\overline{Q}_{O}
Н	Н	\downarrow	Н	L	Н	L
Н	Н	\downarrow	L	Н	L	Н
Н	Н	\downarrow	Н	Н	Toggle	
Н	Н	Н	Χ	Χ	QO	\overline{Q}_O


[†] This configuration is nonstable; that is, it will not persist when either PRE or CLR returns to its inactive (high) level.

EPIC is a trademark of Texas Instruments Incorporated.


SCAS073A - JUNE 1989 - REVISED APRIL 1993

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages.

logic diagram, each flip-flop (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, V _O (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Storage temperature range	65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

SCAS073A - JUNE 1989 - REVISED APRIL 1993

recommended operating conditions

			54	4AC1111	2	74AC11112		LINUT	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		3	5	5.5	3	5	5.5	V
		V _{CC} = 3 V	2.1			2.1			
V_{IH}	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V
		V _{CC} = 5.5 V	3.85			3.85			
		VCC = 3 V			0.9			0.9	
V_{IL}	Low-level input voltage	V _{CC} = 4.5 V			1.35			1.35	V
		V _{CC} = 5.5 V			1.65			1.65	
٧ _I	Input voltage		0		VCC	0		VCC	V
٧o	Output voltage		0		VCC	0		VCC	V
		VCC = 3 V			-4			-4	
lOH	High-level output current	$V_{CC} = 4.5 \text{ V}$			-24			-24	mA
		$V_{CC} = 5.5 \text{ V}$			-24			-24	
		V _{CC} = 3 V			12			12	
loL	Low-level output current	V _{CC} = 4.5 V			24			24	mA
		V _{CC} = 5.5 V			24			24	
Δt/Δν	Input transition rise or fall rate		0		10	0		10	ns/V
TA	Operating free-air temperature		-55	_	125	-40	_	85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS	V	T,	Δ = 25°C	;	54AC1	11112	74AC1	1112	LINUT
PARAMETER	TEST CONDITIONS	vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		3 V	2.9			2.9		2.9		
	ΙΟΗ = – 50 μΑ	4.5 V	4.4			4.4		4.4		
		5.5 V	5.4			5.4		5.4		
V	I _{OH} = – 4 mA	3 V	2.58			2.4		2.48		V
VOH		4.5 V	3.94			3.7		3.8		ď
	I _{OH} = – 24 mA	5.5 V	4.94			4.7		4.8		
	I _{OH} = -50 mA [†]	5.5 V				3.85				
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V						3.85		
		3 V			0.1		0.1		0.1	
	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	
		5.5 V			0.1		0.1		0.1	
Va	I _{OL} = 12 mA	3 V			0.36		0.5		0.44	V
VOL	lo 24 m/	4.5 V			0.36		0.5		0.44	V
	I _{OL} = 24 mA	5.5 V			0.36		0.5		0.44	İ
	I _{OL} = 50 mA [†]	5.5 V					1.65			
	$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V							1.65	
lį	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		80		40	μΑ
Ci	V _I = V _{CC} or GND	5 V		3.5	·					pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

SCAS073A - JUNE 1989 - REVISED APRIL 1993

timing requirements, V_{CC} = 3.3 V \pm 0.3 V (see Figure 1)

			T _A =	T _A = 25°C		T _A = 25°C		11112	74AC11112		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT		
fclock	Clock frequency		0	100	0	70	0	70	MHz		
	t _w Pulse duration	PRE or CLR low	5		5		5				
t _W	ruise duration	CLK low or CLK high	5		5		5		ns		
	Setup time before CLK↓	Data high or low	5		5		5		20		
t _{su} Setup time before	Setup time before CER	PRE or CLR inactive	2.5		2.5		2.5		ns		
th	Hold time after CLK↓		0.5	Ī	0.5	·	0.5		ns		

timing requirements, $V_{\mbox{CC}}$ = 5 V \pm 0.5 V (see Figure 1)

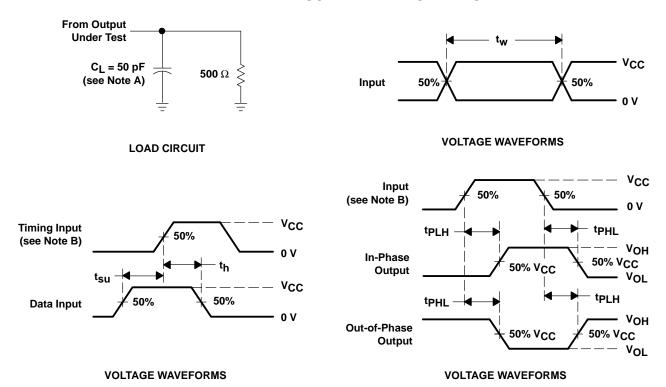
			T _A = 25°C		54AC11112		74AC11112		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
fclock	Clock frequency		0	125	0	125	0	125	MHz
tw Pulse duration	PRE or CLR low	4		4		4		ne	
t _W	Puise duration	CLK low or CLK high	4		4		4		ns
	Setup time before CLK↓	Data high or low	3.5		3.5		3.5		20
t _{su}	Setup time before CER	PRE or CLR inactive	2		2		2		ns
th	Hold time after CLK↓		1	·	1	·	1	·	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	PARAMETER FROM		T _A = 25°C			54AC	11112	74AC11112		UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
f _{max}			100	150		100		100		MHz
^t PLH	PRE or CLR	0 - 2 - 1	1.5	4.9	6.7	1.5	7.6	1.5	7.3	ns
^t PHL	PRE OF CLR	Q or Q	1.5	7	9.2	1.5	10.3	1.5	9.9	115
^t PLH	CLK	Q or $\overline{\mathbb{Q}}$	1.5	5.4	7.1	1.5	7.9	1.5	7.6	ns
^t PHL	CLK	3013	1.5	6	7.9	1.5	9	1.5	8.5	115

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	PARAMETER FROM TO		T _A = 25°C			54AC11112		74AC11112		UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
f _{max}			125	175		125		125		MHz
t _{PLH}	DDE OLD	0	1.5	3.3	5.1	1.5	5.6	1.5	5.4	20
t _{PHL}	PRE or CLR	Q or Q	1.5	4.6	6.7	1.5	7.7	1.5	7.3	ns
t _{PLH}	CLK	Q or Q	1.5	3.4	5.1	1.5	5.8	1.5	5.6	ns
^t PHL	CLK	Q 01 Q	1.5	4.2	6.3	1.5	7.4	1.5	7	115


operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per gate	$C_L = 50 \text{ pF}, f = 1 \text{ MHz}$	37	pF

SCAS073A - JUNE 1989 - REVISED APRIL 1993

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.

C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated