SCAS052A - JULY 1987 - REVISED APRIL 1993

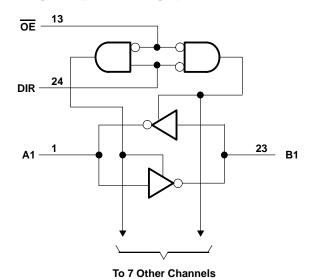
 Bidirectional Bus Transceivers in	DW OR NT PACKAGE
High-Density 24-Pin Packages	(TOP VIEW)
 Flow-Through Architecture Optimizes PCB	A1 [1 24] DIR
Layout	A2 [2 23] B1
 Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise 	A3 3 22 B2 A4 4 21 B3
 EPIC™ (Enhanced-Performance Implanted	GND [5 20] B4
CMOS) 1-µm Process	GND [6 19] V _{CC}
 500-mA Typical Latch-Up Immunity at	GND 7 18 V _{CC}
125°C	GND 8 17 B5
 Package Options Include Plastic Small-Outline Packages and Standard Plastic 300-mil DIPs 	A5 9 16 B6 A6 10 15 B7 A7 11 14 B8 A8 12 13 OE

description

These octal bus transceivers are designed for asynchronous communication between data buses. These devices transmit data from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

The 74AC11640 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE


INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	Χ	Isolation

EPIC is a trademark of Texas Instruments Incorporated.

logic symbol†

13 OE G3 DIR 3 EN1 [BA] 3 EN2 [AB] 23 В1 1 1 2 ▽ 22 **B2 A2** 21 ВЗ **A3** 20 В4 Α4 17 Α5 **B5** 16 В6 **A6** 15 11 **B7** Α7 14 12 **A8 B8**

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage range, V _{CC}	\dots -0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$V \text{ to V}_{CC} + 0.5 \text{ V}$
Output voltage range, V _O (see Note 1)	$V \text{ to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA
Continuous current through V _{CC} or GND pins	±200 mA
Storage temperature range	-65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	V
		V _{CC} = 3 V	2.1			
V_{IH}	High-level input voltage	V _{CC} = 4.5 V	3.15			V
		V _{CC} = 5.5 V	3.85			
		V _{CC} = 3 V			0.9	
VIL	Low-level input voltage	V _{CC} = 4.5 V			1.35	V
		$V_{CC} = 5.5 \text{ V}$			1.65	
٧ _I	Input voltage	•			VCC	V
٧o	Output voltage		0		Vcc	V
		V _{CC} = 3 V			-4	
lон	High-level output current	V _{CC} = 4.5 V			-24	mA
		V _{CC} = 5.5 V			-24	
		V _{CC} = 3 V			12	
lOL	Low-level output current	V _{CC} = 4.5 V			24	mA
		V _{CC} = 5.5 V			24	
44/4		OE or DIR	0		5	//
Δt/Δv	Input transition rise or fall rate	Data	0		10	ns/V
T _A	Operating free-air temperature	•	-40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V	T _A = 25°C			MIN	MAY	UNIT	
		VCC	MIN	TYP	MAX	IVIIIN	MAX	UNIT	
			3 V	2.9			2.9		
		I _{OH} = -50 μA	4.5 V	4.4			4.4		
			5.5 V	5.4			5.4		
V_{OH}		$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48		V
			4.5 V	3.94			3.8		
		$I_{OH} = -24 \text{ mA}$	5.5 V	4.94			4.8		
		I _{OH} = -75 mA [†]	5.5 V				3.85		
		I _{OL} = 50 μA	3 V			0.1		0.1	
			4.5 V			0.1		0.1	
			5.5 V			0.1		0.1	
V_{OL}		I _{OL} = 12 mA	3 V			0.36		0.44	V
		I _{OL} = 24 mA	4.5 V			0.36		0.44	
			5.5 V			0.36		0.44	
		I _{OL} = 75 mA [†]	5.5 V					1.65	
l _l	OE or DIR	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μΑ
l _{OZ} ‡	A or B ports	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±5	μΑ
Icc	-	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ
Ci	OE or DIR	V _I = V _{CC} or GND	5 V		4				pF
Cio	•	V _O = V _{CC} or GND	5 V		12				pF

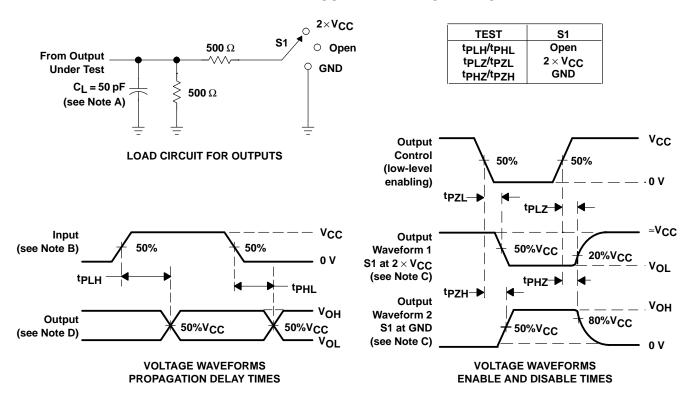
[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

 $[\]mbox{\ensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\mbox{\forestensuremath{\forestensuremath{\mbox{\forestensuremath{\forestensuremath{\mbox{\forestensuremath{\forestensuremat$

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 25°C			MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV	IVIAA	UNIT
t _{PLH}	A or B	B or A	1.5	7	10.5	1.5	12	ns
^t PHL		BULA	1.5	6.3	9.1	1.5	10.2	115
^t PZH	OE	A or B	1.5	8.9	12.5	1.5	14.3	ns
^t PZL		AOID	1.5	8.4	12.9	1.5	14.6	115
^t PHZ	OE	A or B	1.5	7.9	10	1.5	10.8	ne
t _{PLZ}	OE	AUD	1.5	8.6	11	1.5	12	ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


DADAMETED	FROM	TO (OUTPUT)	T _A = 25°C			AAINI	MAY	
PARAMETER	(INPUT)		MIN	TYP	MAX	MIN	MAX	UNIT
t _{PLH}	A or B	B or A	1.5	5.1	7.7	1.5	8.8	ne
t _{PHL}		ВОГА	1.5	4.6	6.9	1.5	7.8	ns
^t PZH	OE	A or B	1.5	6.5	9.4	1.5	10.6	ne
t _{PZL}		AUID	1.5	6.1	9.4	1.5	10.6	ns
^t PHZ	OE	A or B	1.5	6.7	8.6	1.5	9.3	200
t _{PLZ}	OE .	AUB	1.5	7.2	9.1	1.5	9.9	ns

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST C	ONDITIONS	TYP	UNIT	
<u> </u>	Power dissination conscitance per transceiver	Outputs enabled	C: - 50 pF	f = 1 MHz	45	pF
Cpd Power dissipation capa	Power dissipation capacitance per transceiver	Outputs disabled	$C_L = 50 \text{ pF},$	1 = 1 IVIMZ	12	pΓ

SCAS052A - JULY 1987 - REVISED APRIL 1993

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 3$ ns, $t_f \leq 3$ ns. For testing pulse duration: $t_r = t_f = 1$ to 3 ns. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated