INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC02 April 1993

FEATURES

- 8-bit performance on chip for luminance and chrominance signal processing for PAL, NTSC and SECAM standards
- Separate 8-bit luminance and 8-bit chrominance input signals from Y/C, CVBS, S-Video (S-VHS or Hi8) sources
- SCART signal insertion by means of RGB/YUV convertion; fast switch handling
- · Horizontal and vertical sync detection for all standards
- Real time control output RTCO
- Fast sync recovery of vertical blanking for VCR signals (bottom flutter compensation)
- Controls via the l²C-bus
- User programmable aperture correction (horizontal peaking)
- Cross-colour reduction by chrominance comb-filtering (NTSC) or by special cross-colour cancellation (SECAM)
- 8-bit quantization of output signals in 4:1:1 or 4:2:2 formats
- 720 active samples per line

QUICK REFERENCE DATA

- The YUV bus supports a data rate of 13.5 MHz (CCIR 601).
 - (864 $\times\,f_{\text{H}})$ for 50 Hz
 - (858 \times f_H) for 60 Hz
- Compatible with memory-based features (line-locked clock)
- One 24.576 MHz crystal oscillator for all standards

GENERAL DESCRIPTION

The SAA7151B is a digital multistandard colour-decoder having two 8-bit input channels, one for CVBS or Y, the other for chrominance or time-multiplexed colour-difference signals.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT	
V _{DD}	supply voltage (pins 5, 18, 28, 37 and 52)	4.5	5	5.5	V	
I _{DD}	total supply current (pins 5, 18, 28, 37 and 52)	-	100	250	mA	
VI	input levels	TTL-compatible				
Vo	output levels	TTL-compatible				
T _{amb}	operating ambient temperature	0	_	70	°C	

ORDERING INFORMATION

EXTENDED TYPE	PACKAGE						
NUMBER	PINS	PIN POSITION	MATERIAL	CODE			
SAA7151B	68	mini-pack PLCC	plastic	SOT188 ⁽¹⁾			

Note

1. SOT188-2; 1996 December 16.

BLOCK DIAGRAM

PINNING

GPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0C)HCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)V _{DD3} 28+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	SYMBOL	PIN	DESCRIPTION
RESN 3 reset, active-LOW CREF 4 clock reference, sync from external to ensure in-phase signals on the Y-, CUV- and YUV-bus VpD1 5 +5 V supply input 1 CUV0 6 CUV1 7 CUV2 8 CUV3 9 chrominance input data bits CUV7 to CUV0 (digitized chrominance signals in two's complem format from a S-Video source (S-VHS, Hi8) or time-multiplexed colour-difference signals fror YUV(RGB) source or both in combination) CUV6 12 CUV7 13 CVBS1 15 CVBS2 16 (CVBS with luminance, chrominance and all sync information in two's complement format) CVBs2 16 CVBS1 17 VpD1 24 VS1 19 ground 1 (0 V) 10 CVBS4 20 CVBS5 21 CVBS upper input data bits CVBS7 to CVBS4 CVBS6 22 (CVBS with luminance, chrominance and all sync information in two's complement format) CVBS7 23 CVBS upper input data bits CVBS7 to CVBS4 CVBS6 22 (CVBS with luminance, chrominance and all sync information in two's complement format)	SP	1	connected to ground (shift pin for testing)
CREF 4 clock reference, sync from external to ensure in-phase signals on the Y-, CUV- and YUV-bus V _{DD1} 5 +5 V supply input 1 CUV0 6 CUV1 7 CUV2 8 CUV3 9 forminance input data bits CUV7 to CUV0 (digitized chrominance signals in two's complem format from a S-Video source (S-VHS, Hi8) or time-multiplexed colour-difference signals fror YUV(RGB) source or both in combination) CUV5 11 CUV7 13 CVBS0 14 CVBS1 15 CVBS to the input data bits CVBS3 to CVBS0 CVBS1 15 CVBS1 15 CVBS1 17 VpD2 18 +5 V supply input 2 Vss1 19 ground 1 (0 V) CVBS4 20 CVBS4 22 CVBS4 23 CVBS5 12 CVBS upper input data bits CVBS7 to CVBS4 CVBS5 23 GPSW1 24 status bit output FSST0 or port 1 output for general purpose (progra	AP	2	connected to ground (action pin for testing)
V _{DD1} 5 +5 V supply input 1 CUV0 6 CUV1 7 CUV2 8 chrominance input data bits CUV7 to CUV0 (digitized chrominance signals in two's complem format from a S-Video source (S-VHS, Hi8) or time-multiplexed colour-difference signals fror YUV(RGB) source or both in combination) CUV4 10 CUV4 11 CUV6 12 CUV7 13 CVBS0 14 CVBS1 15 CVBS1 the CVBS lower input data bits CVBS3 to CVBS0 CVBS2 16 CVBS3 17 V _{DD2} 18 +5 V supply input 2 V _{SS1} 19 ground 1 (0 V) CVBS4 20 CVBS5 21 CVBS supper input data bits CVBS7 to CVBS4 CVBS7 23 GPSW1 24 Status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C GPSW2 25 Status bit output FSST0 or port 2 output tog general purpose (programmable) by subaddress 0C HCL	RESN	3	reset, active-LOW
CUV06CUV17CUV28CUV39format from a S-Video source (S-VHS, Hi8) or time-multiplexed colour-difference signals fromVUV410YUV(RGB) source or both in combination)CUV511CUV612CUV713CVBS014CVBS1CVBS lower input data bits CVBS3 to CVBS0CVBS216CVBS317VDcz18+5 V supply input 2VSs119ground 1 (0 V)CVBS622CVBS622CVBS622CVBS622CVBS622CVBS623CVBS622CVBS623CVBS623CVBS623CVBS624status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW124status bit output FSST0 or port 2 output for general purpose (programmable by subaddress 0CGPSW124status bit output FSST1 or port 2 output for general purpose (programmable), e.g. for gain adj.TDA8708A (ADC)LL2727Ine-locked system clock input signal (27 MHz)VDc328+5 V supply input 3HSY29hor: sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)LL2727Ine-locked system clock input signal (27 MHz)VDc328HSY29hor: sync pulse reference output	CREF	4	clock reference, sync from external to ensure in-phase signals on the Y-, CUV- and YUV-bus
CUV17CUV28CUV39CUV410CUV410CUV511CUV612CUV713CVBS014CVBS115CVBS216CVBS216CVBS317VD0218+5 V supply input 2VD0218+5 V supply input 2VBS321CVBS420CVBS521CVBS521CVBS521CVBS521CVBS522CVBSCVBS with luminance, chrominance and all sync information in two's complement format)CVBS521CVBS521CVBS521CVBS with luminance, chrominance and all sync information in two's complement format)CVBS622CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723CPSW124Status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable), e.g. for TDA8708A (ADC)LL2727Ine-locked system clock input signal (72 MHz)Vp032845Supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)LL2727Ine-locked system clock input signal (Fig.11)HS31 <td>V_{DD1}</td> <td>5</td> <td>+5 V supply input 1</td>	V _{DD1}	5	+5 V supply input 1
CUV28chrominance input data bits CUV7 to CUV0 (digitized chrominance signals in two's complem format from a S-Video source (S-VHS, Hi8) or time-multiplexed colour-difference signals from YUV(RGB) source or both in combination)CUV511CUV612CUV713CVBS014CVBS115CVBS116(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS216(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS317VDD21845 V supply input 2VD2218VSS119ground 1 (0 V)CVBS420CVBS521CVBS with luminance, chrominance and all sync information in two's complement format)CVBS522(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS420CVBS521CVBS with luminance, chrominance and all sync information in two's complement format)CVBS522CVBS with luminance, chrominance and all sync information in two's complement format)CVBS523GPSW124status bit output FSST0 or port 1 output for general purpose (programmable) subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable), e.g. for TDA8708A (ADC)LL2727Ine-locked system clock input signal (Fig.16; start point programmable), e.g. for gain adj.TDA8708A (ADC)LL2728	CUV0	6	
CUV39chrominance input data bits CUV7 to CUV0 (digitized chrominance signals in two's complem format from a S-Video source (S-VHS, Hi8) or time-multiplexed colour-difference signals from YUV(RGB) source or both in combination)CUV511rCUV612rCUV713rCVBS014rCVBS115CVBS lower input data bits CVBS3 to CVBS0 (CVBS2CVBS216rCVBS317VD0218+5 V supply input 2VS8119ground 1 (0 V)CVBS420CVBS521CVBS upper input data bits CVBS7 to CVBS4 (CVBS6CVBS522rCVBS420CVBS723GPSW124Status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C GPSW2GPSW124Status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C GPSW2GPSW124Status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C GPSW2GPSW124Status bit output FSST0 or port 1 output for general purpose (programmable) subaddress 0C (ADC)VDD328+5 V supply input 3VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30Vertical sync output signal (Fig.16; start point programmable)RTCO32real time co	CUV1	7	
CVUV410format from a S-Video source (S-VHS, Hi8) or time-multiplexed colour-difference signals from YUV(RGB) source or both in combination)CUV511CUV612CUV713CVBS014CVBS115CVBS216(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS317VD0218+5 V supply input 2Vss119ground 1 (0 V)CVBS420CVBS521CVBS522CVBS723CPSW124Status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C GPSW2GPSW225status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C GPSW2GPSW228tSVsptem clock input signal (27 MHz)VD0328HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for TDA8708A (ADC)L12727L1811HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30Vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz connection for crystal or external oscillator (TTL c	CUV2	8	
CUV410YUV(RGB) source or both in combination)CUV511CUV612CUV713CVBS014CVBS115CVBS lower input data bits CVBS3 to CVBS0CVBS216(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS317VpD218+5 V supply input 2VSs119ground 1 (0 V)CVBS420CVBS521CVBS upper input data bits CVBS7 to CVBS4CVBS622(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS521CVBS upper input data bits CVBS7 to CVBS4CVBS622(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723GPSW124Status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225Status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CHCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727Ine-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor: sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30Vertical sync output signal (Fig.11)HS31HS31HSY32real time control output; serial increment	CUV3	9	
CUV511CUV612CUV713CVBS014CVBS115CVBS lower input data bits CVBS3 to CVBS0CVBS216(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS317VDD218+5 V supply input 2VSS119ground 1 (0 V)CVBS420CVBS422CVBS422CVBS422CVBS422CVBS423GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CHCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727LIne-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30Vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTALI3324.576 MHz connection for crystal or external oscillator)	CUV4	10	
CUV713CVBS014CVBS115CVBS lower input data bits CVBS3 to CVBS0CVBS216(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS317VDD218+5 V supply input 2Vbs119ground 1 (0 V)CVBS521CVBS upper input data bits CVBS7 to CVBS4CVBS522CVBS upper input data bits CVBS7 to CVBS4CVBS523CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723CVBSGPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable) by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable) by subaddress 0CGPSW228+5 V supply input 3HSY29hor, sync pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)VL1730vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable), e.g. for gain adj.TDA8708A (ADC)VSA30vertical sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and F	CUV5	11	
CVBS014 CVBS1CVBS lower input data bits CVBS3 to CVBS0 (CVBS2CVBS216 (CVBS with luminance, chrominance and all sync information in two's complement format)CVBS317VDD218 45 V supply input 2Vss119 ground 1 (0 V)CVBS420 CVBS5CVBS521 (CVBS with luminance, chrominance and all sync information in two's complement format)CVBS420 CVBS5CVBS622 (CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723GPSW124Status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C GPSW2GPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0C HCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)L12727Ine-locked system clock input signal (27 MHz)VDD328 (ADC)VS30Vertical sync output signal (Fig.11)HS31 horizontal sync output signal (Fig.11)HS31 sequence (Fig.10)XTAL3324.576 MHz clock output (pen-circuit for use with external oscillator)XTAL3424.576 MHz clock output or external oscillator (TTL compatible squarewave)VssA35 analog groundLFCO36LFCO36Ine frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)VDDA37 +5 V supply input for analo	CUV6	12	
CVBS115 CVBS with luminance, chrominance and all sync information in two's complement format)CVBS317VDD218+5 V supply input 2Vss119ground 1 (0 V)CVBS420CVBS521CVBS upper input data bits CVBS7 to CVBS4CVBS622CVBS with luminance, chrominance and all sync information in two's complement format)CVBS622CVBS upper input data bits CVBS7 to CVBS4CVBS622CVBS with luminance, chrominance and all sync information in two's complement format)CVBS72323GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CGPSW226black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; fsart point programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.16; fsart point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz connection for crystal or external oscillator)XTAL3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35 </td <td>CUV7</td> <td>13</td> <td></td>	CUV7	13	
CVBS216(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS317VDD218+5 V supply input 2VsS119ground 1 (0 V)CVBS420CVBS521CVBS upper input data bits CVBS7 to CVBS4CVBS622(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS623CVBS with luminance, chrominance and all sync information in two's complement format)CVBS72323GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CHCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)LL2727line-locked system clock input signal (Fig.16; start point programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTAL3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)VsSA35	CVBS0	14	
CVBS216 (CVBS with luminance, chrominance and all sync information in two's complement format)CVBS317VDD218+5 V supply input 2VSS119ground 1 (0 V)CVBS420CVBS521CVBS upper input data bits CVBS7 to CVBS4CVBS622CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CHCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37<	CVBS1	15	CVBS lower input data bits CVBS3 to CVBS0
VDD218+5 V supply input 2Vss119ground 1 (0 V)CVBS420CVBS521CVBS upper input data bits CVBS7 to CVBS4CVBS622CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CHCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)VSSA35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)VDDA37+5 V supply input for analog part	CVBS2	16	
Vss119ground 1 (0 V)CVBS420CVBS521CVBS upper input data bits CVBS7 to CVBS4CVBS622(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CHCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	CVBS3	17	
Vss119ground 1 (0 V)CVBS420CVBS521CVBS upper input data bits CVBS7 to CVBS4CVBS622(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CHCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	V _{DD2}	18	+5 V supply input 2
CVBS5 CVBS621 CVBS upper input data bits CVBS7 to CVBS4 (CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C)GPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0C)HCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part		19	ground 1 (0 V)
CVBS622(CVBS with luminance, chrominance and all sync information in two's complement format)CVBS723GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C)GPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0C)HCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	CVBS4	20	
CVBS723GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0CGPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0CHCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)V _{DD3} 28+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	CVBS5	21	CVBS upper input data bits CVBS7 to CVBS4
GPSW124status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C)GPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0C)HCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	CVBS6	22	(CVBS with luminance, chrominance and all sync information in two's complement format)
GPSW225status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0C)HCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)V _{DD3} 28+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	CVBS7	23	
HCL26black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)LL2727line-locked system clock input signal (27 MHz)V _{DD3} 28+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	GPSW1	24	status bit output FSST0 or port 1 output for general purpose (programmable by subaddress 0C)
LL2727line-locked system clock input signal (27 MHz)VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	GPSW2	25	status bit output FSST1 or port 2 output for general purpose (programmable by subaddress 0C)
VDD328+5 V supply input 3HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	HCL	26	black level clamp pulse output (begin and stop programmable), e.g. for TDA8708A (ADC)
HSY29hor. sync pulse reference output (begin and stop programmable), e.g. for gain adj.TDA8708A (ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	LL27	27	line-locked system clock input signal (27 MHz)
(ADC)VS30vertical sync output signal (Fig.11)HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	V _{DD3}	28	+5 V supply input 3
HS31horizontal sync output signal (Fig.16; start point programmable)RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)VSSA35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)VDDA37+5 V supply input for analog part	HSY	29	
RTCO32real time control output; serial increments of HPLL and FSCPLL and status PAL or SECAM sequence (Fig.10)XTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	VS	30	vertical sync output signal (Fig.11)
xTAL3324.576 MHz clock output (open-circuit for use with external oscillator)XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	HS	31	horizontal sync output signal (Fig.16; start point programmable)
XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	RTCO	32	
XTALI3424.576 MHz connection for crystal or external oscillator (TTL compatible squarewave)V _{SSA} 35analog groundLFCO36line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz)V _{DDA} 37+5 V supply input for analog part	XTAL	33	
LFCO 36 line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz) V _{DDA} 37 +5 V supply input for analog part	XTALI	34	
LFCO 36 line frequency control output signal, multiple of horizontal frequency (nominal 6.75 MHz) V _{DDA} 37 +5 V supply input for analog part	V _{SSA}	35	analog ground
V _{DDA} 37 +5 V supply input for analog part		36	
	V _{DDA}	37	+5 V supply input for analog part
	V _{SS2}	38	ground 2 (0 V)

	1	1
SYMBOL	PIN	DESCRIPTION
ODD	39	odd/even field identification output (odd = HIGH)
SDA	40	I ² C-bus data line
SCL	41	I ² C-bus clock line
HREF	42	horizontal reference for YUV data outputs (for active line 720Y samples long)
IICSA	43	set module address input of I ² C-bus (LOW = 1000 101X; HIGH = 1000 111X)
CPI	44	clamping pulse input (digital clamping of external UV signals)
Y7	45	
Y6	46	
Y5	47	V signal sutput hits VZ to V2 (luminance) part of the divite! VLIV hus
Y4	48	Y signal output bits Y7 to Y2 (luminance), part of the digital YUV-bus
Y3	49	
Y2	50	
V _{SS3}	51	ground 3 (0 V)
V _{DD4}	52	+5 V supply input 4
Y1	53	Y signal output bits Y1 to Y0 (luminance), part of the digital YUV-bus
Y0	54	r signal output bits fill to fo (luminance), part of the digital fov-bus
UV7	55	
UV6	56	
UV5	57	
UV4	58	$1/\sqrt{2}$ are a struct bits $1/\sqrt{7}$ to $1/\sqrt{9}$, part of the digital $1/\sqrt{10}$ but
UV3	59	UV signal output bits UV7 to UV0, part of the digital YUV-bus
UV2	60	
UV1	61	
UV0	62	
GPSW0	63	port output for general purpose (programmable by subaddress 0D)
FEIN	64	fast enable input (active-LOW to control fast switching due to YUV data; HIGH = YUV high-Z
MUXC	65	multiplexer control output; source select signal for external ADC (UV signal multiplexing)
FSO	66	fast switch and sync insertion output; gated FS signal from FSI or sync insertion pulse in full screen RGB mode
V _{SS4}	67	ground 4 (0 V)
FSI	68	fast switch input signal fed from SCART/peri-TV connector (indicates fast insertion of RGB signals)

FUNCTIONAL DESCRIPTION

System configuration

The SAA7151B system processes digital TV signals with line-locked clock in PAL, SECAM and NTSC standards (CVBS or S-Video) as well as RGB signals coming from a SCART/peri-TV connector. The different source signals are switched, if necessary matrixed and converted (Fig.3 and Table 1).

8-bit CVBS data (digitized composite video) and 8-bit UV data (digitized chrominance and /or time-multiplexed colour-difference signals) are fed to the SAA7151B. The data rate is 27 MHz.

Chrominance processing

The 8-bit chrominance input signal (signal "C" out of CVBS or Y/C in Fig.4) is fed via the input interface to a bandpass filter for eliminating the DC component, then to the quadrature demodulator. Subcarrier signals from the local oscillator (DTO1) with 90 degree phase shift are applied to its multiplier inputs. The frequency depends on set TV standard.

SAA7151B

The multipliers operate as a quadrature demodulator for all PAL and NTSC signals; it operates as a frequency down-mixer for SECAM signals.

The two multiplier output signals are converted to a serial UV data stream and applied to two low-pass filter stages, then to a gain controlled amplifier. A final multiplexed low-pass filter achieves, together with the preceding stages, the required bandwidth performance. The from PAL and NTSC originated signals are applied to a comb-filter. The signals, originated from SECAM, are fed through a cloche filter (0 Hz centre frequency), a phase demodulator and a differentiator to obtain frequency-demodulated colour-difference signals.

The SECAM signals are fed after de-emphasis to a cross-over switch, to provide the both serial-transmitted colour-difference signals. These signals are finally fed via

the fast switch to the output formatter stages and to the output interface.

Chrominance signals are output in parallel (4:2:2) on the YUV-bus. The data rate of Y signal (pixel rate) is 13.5 MHz. UV signals have a data rate of 13.5 MHz/2 for the 4:2.2 format (Table 2) respectively 13.5 MHz/4 for the 4:1.1 format (Table 3).

Component processing and SCART interface control

The 8-bit multiplexed colour-difference input signal (signal CUV, Fig.1, out of matrixed RGB in Fig.3) is fed via the input interface to a chrominance stop filter (UV signal only can pass through; Figures 22 to 24). Here it is clamped and fed to the offset compensation which can be enabled or disabled via the l^2 C-bus.

For matrixed RGB signals - the full screen SCART mode and the fast insertion mode (blanking/switching) are selectable. The chrominance stop filter is automatically bypassed in full screen SCART mode.

Full screen RGB mode (SCART):

The CUV digital input signal (7-0) consists of time-multiplexed samples for U and V. An offset correction for both signals is applied to correct external clamping

errors. An internal timing correction compensates for slight differences in timing during sampling. The U and V signals are delay-compensated and fed to the output formatter. The format 4:2:2 or 4:1:1 is generated by a switchable filter.

The control signals for the front end (Figures 3 and 20) MUXC, status bits FSST1, FSST0 (outputs GPSW2, GPSW1) and FSO are generated by the SAA7151B.

MODE		CONN	ECTION		chroma	TDA8709	Α	luminance	input	
	FSO	GPSW 2	GPSW 1	MUXC	output of TDA8446 to TDA8709A	TDA8446 selected C		fast switch TDA8446	selector (via I ² C-bus) TDA8540	
RGB	0	0	0	0	high-Z	VIN2	U/V	sync (RGB)	sync (RGB)	
only	0	0	0	1	nign-z	VIINZ	0/1	Sync (ICGB)	Sync (ICGD)	
Y/C or CVBS only	0 0	0 0	1 1	0 1	С	VIN1	С	Y (Y/C) or CVBS	Y (Y/C) or CVBS	
Fast switch	0	1 1	0 0	0 1	С	VIN2	0.5(C+U)/ 0.5(C+V)	Y (Y/C) or CVBS	Y (Y/C) or CVBS	
	0 0	1 1	1 1	0 1				not used		
RGB only	1 1	0 0	0 0	0 1	high-Z	VIN2	U/V	Y (RGB)	sync (RGB)	
	1 1	0 0	1 1	0 1		not used				
Fast switch	1 1	1 1	0 0	0 1	С	VIN2	0.5(C+U)/ 0.5(C+V)	Y (RGB)	Y (Y/C) or CVBS	
	1 1	1 1	1 1	0 1			•	not used		

Table 1 SCART interface control (Fig.3)

Fast insertion mode:

Fast insertion is applied by FSI pulse to ensure correct timing. The RGB source signal is matrixed into UV and inserted into the CVBS or Y/C source signal after two field periods if FSI pulses are received. The output FSO is set to HIGH during a determined insertion window (screen plain minus 6 % of horizontal and vertical deflection). Switch over depends on the phase of FSI in relation to the valid pixel sequence depending on the phase-different weighting factors. They are applied to the original and the inserted UV data (Figures 6 and 7)

The control signals for the front end (Table 1) MUXC, FSO, status bits FSST1 and FSST0 (outputs GPSW2 and GPSW1) are generated by the SAA7151B.

The amplitude of chrominance and colour-difference signals are scaled down by factor 2 to avoid overloading of the chrominance analog-to-digital converter. The amplitudes are reduced in the TDA8446 by signals on lines GPSW2 and GPSW1.

Product specification

Luminance processing

The luminance input signal, a digital CVBS format or an 8-bit luminance format (S-Video), is fed through a sample rate converter to reduce the data rate to 13.5 MHz (Fig.5).

Sample rate is converted by means of a switchable pre-filter. High frequency components are emphasized to compensate for loss in the following chrominance trap filter. This chrominance trap filter ($f_o = 4.43$ MHz or $f_o = 3.58$ MHz centre frequency selectable) eliminates the most of the colour carrier signal, therefore, it must be bypassed for S-Video signals.

The high frequency components of the luminance signal can be "peaked" in two bandpass filters with selectable transfer characteristic. A coring circuit (±1 LSB) can improve the signal, this signal is then added to the original signal. A switchable amplifier achieves a common DC amplification, because the DC gains are different in both chrominance trap modes. Additionally, a cut-off sync pulse is generated for the original signal in both modes.

Synchronization

The luminance output signal is fed to the synchronization stage. Its bandwidth is reduced to 1 MHz in a low-pass filter (sync pre-filter). The sync pulses are sliced and fed to the phase detectors to be compared with the sub-divided clock frequency. The resulting output signal is applied to the loop filter to accumulate all phase deviations. There are three groups of output timing signals:

- a. signals related to data output signals (HREF)
- b. signals related to the input signals (HSY, and HCL)
- c. signals related to the internal sync phase

All horizontal timings are derived from the main counter, which represents the internal sync phase. The HREF signal only with its critical timing is phase-compensated in relationship to the data output signal. Future circuit improvements could slightly influence the processing delays of some internal stages to achieve a changed timing due to the timing groups b and c.

The HREF signal only controls the data multiplexer phase and the data output signals.

All timings of the following diagrams are measured with nominal input signals, for example coming from a pattern generator. Processing delay times are taken between input and data output, respectively between internal sync reference (main counter = 0) and the rising edge of HREF.

Line locked clock frequency

LFCO is required in an external PLL (SAA7157) to generate the line-locked clock frequency LL27 and CREF.

YUV-bus, digital outputs

The 16-bit YUV-bus transfers digital data from the output interfaces to a feature box, or to the digital-to-analog converter (DAC). Outputs are controlled via the l²C-bus in normal selections, or they are controlled by output enable chain (FEIN, pin 64). The YUV-bus data rate 13.5 MHz. Timing is achieved by marking each second positive rising edge of the clock LL27 synchronized by CREF.

YUV-bus formats

4:2:2 and 4:1:1

The output signals Y7 to Y0 are the bits of the digital luminance signal. The output signals UV7 to UV0 are the bits of the digital colour-difference signal. The frames in the Tables 2 and 3 are the time to transfer a full set of samples. In case of 4 : 2 : 2 format two luminance samples are transmitted in comparison to one U and one V sample within one frame. The time frames are controlled by the HREF signal, which determines the correct UV data phase. The YUV data outputs can be enabled or set to 3-state position by means of the FEIN signal. FEIN = LOW enables the output; HIGH on this pin forces the Y and U/V outputs to a high-impedance state (Fig.6).

April 1993

Table 2	for the 4 : 2 : 2 format (720 pixels per line). The quoted frequencies are valid on the YUV-bus. The time
	frames are controlled by the HREF signal.

OUTPUT PIXEL BYTE SEC						UENCE			
Y0 (LSB)	Y0	Y0	Y0	Y0	Y0	Y0			
Y1	Y1	Y1	Y1	Y1	Y1	Y1			
Y2	Y2	Y2	Y2	Y2	Y2	Y2			
Y3	Y3	Y3	Y3	Y3	Y3	Y3			
Y4	Y4	Y4	Y4	Y4	Y4	Y4			
Y5	Y5	Y5	Y5	Y5	Y5	Y5			
Y6	Y6	Y6	Y6	Y6	Y6	Y6			
Y7 (MSB)	Y7	Y7	Y7	Y7	Y7	Y7			
UV0 (LSB)	UO	V0	U0	V0	U0	V0			
UV1	U1	V1	U1	V1	U1	V1			
UV2	U2	V2	U2	V2	U2	V2			
UV3	U3	V3	U3	V3	U3	V3			
UV4	U4	V4	U4	V4	U4	V4			
UV5	U5	V5	U5	V5	U5	V5			
UV6	U6	V6	U6	V6	U6	V6			
UV7 (MSB)	U7	V7	U7	V7	U7	V7			
Y frame	0	1	2	3	4	5			
UV frame	0		2		4				

Table 3for the 4 : 1 : 1 format (720 pixels per line). The quoted frequencies are valid on the YUV-bus. The time
frames are controlled by the HREF signal.

OUTPUT	PIXEL BYTE SEQUENCE							
Y0 (LSB)	Y0	Y0	Y0	Y0	Y0	Y0	Y0	Y0
Y1	Y1	Y1	Y1	Y1	Y1	Y1	Y1	Y1
Y2	Y2	Y2	Y2	Y2	Y2	Y2	Y2	Y2
Y3	Y3	Y3	Y3	Y3	Y3	Y3	Y3	Y3
Y4	Y4	Y4	Y4	Y4	Y4	Y4	Y4	Y4
Y5	Y5	Y5	Y5	Y5	Y5	Y5	Y5	Y5
Y6	Y6	Y6	Y6	Y6	Y6	Y6	Y6	Y6
Y7 (MSB)	Y7	Y7	Y7	Y7	Y7	Y7	Y7	Y7
UV0 (LSB)	0	0	0	0	0	0	0	0
UV1	0	0	0	0	0	0	0	0
UV2	0	0	0	0	0	0	0	0
UV3	0	0	0	0	0	0	0	0
UV4	V6	V4	V2	V0	V6	V4	V2	V0
UV5	V7	V5	V3	V1	V7	V5	V3	V1
UV6	U6	U4	U2	U0	U6	U4	U2	U0
UV7 (MSB)	U7	U5	U3	U1	U7	U5	U3	U1
Y frame	0	1	2	3	4	5	6	7
UV frame	0				4			

SAA7151B

Signal levels (Figures 12, 13 and 14)

The nominal input and output signal levels are defined by a colour bar signal with 75 % colour, 100 % saturation and 100 % luminance amplitude (EBU colour bar).

CUV-bus input format

The CUV-bus transfers the digital chrominance/colour-difference signals from the ADC to the SAA7151B (Fig.6; Table 1): • normal mode for digital chrominance transmission.

- UV colour-difference mode for colour-difference signals UV (out of matrixed RGB signals)
- FS mode (fast switch mode; UV inserted into chrominance signal C with addition of the two signal spectra).

RTCO output

The RTCO output signal (Fig.10) contains serialized information about actual clock frequency, subcarrier frequency and PAL/SECAM sequence. This signal may preferably be used with the frequency-locked digital video encoder SAA7199B.

SAA7151B

Digital multistandard colour decoder with SCART interface (DMSD2-SCART)

Normal mode (chrominance pixel byte sequence)	
MUXC /	
Normal mode (chrominance pixel byte sequence)	Ĺ
	C5
UV colour-difference mode (UV pixel byte sequence)	/
colour- difference V0 V1 V2 V3 V4	V5
	/ (1)
valid colour- difference U0 V1 U3	V5
Fast switch mode (data insertion)	
$CUV \qquad \qquad$)/2 (V5 + C5)/2
↓ (1) ↓ (1)	(1)
	t ``'

+127 +127 reserved +106 +95 100% white +84+76 luminance 60 Hz mode luminance chrominance С 50 Hz mode 60 Hz mode chrominance chrominance 0 0 50 Hz mode U component of colour-difference signal -52 -64 blanking level -76 -84 -91 -103sync -128 -128 clipped -132 (b) CUV input signal range (a) CVBS input signal range. (U and V out of RGB; in FS mode ranges \times 0.5). +255 +255 +255 +235 white 100% – – red 75% blue 75% +212 +212 luminance signal output range +128 +128 +128 U-component V-component output signal range output signal range +44 yellow 75% cyan 75% +44 _ _ _ _ black +160 0 0 (c) Y output signal range. (d) U output signal range (B-Y). (e) V output signal range (R-Y). MEH300 Notes: 1. All levels are related to EBU colour bar. 2. Values in decimal at 100 % luminance and 75 % chrominance amplitude. 3. For SECAM input signals the CCIR levels will be exceeded.

SAA7151B

Digital multistandard colour decoder with SCART interface (DMSD2-SCART)

SAA7151B

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134); ground pins 19, 35, 38, 51 and 67 as well as supply pins 5, 18, 28, 37 and 52 connected together.

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	supply voltage (pins 5, 18, 28, 37, 52)	-0.5	7.0	V
V _{diff GND}	difference voltage V _{SS A} - V _{SS(1 to 4)}	_	±100	mV
VI	voltage on all inputs	-0.5	V _{DD} +0.5	V
Vo	voltage on all outputs (I _{O max} = 20 mA)	-0.5	V _{DD} +0.5	V
P _{tot}	total power dissipation	-	2.5	W
T _{stg}	storage temperature range	-65	150	°C
T _{amb}	operating ambient temperature range	0	70	°C
V _{ESD}	electrostatic handling ⁽¹⁾ for all pins	_	±2000	V

Note

1. Equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor; inputs and outputs are protected against electrostatic discharge in normal handling. Normal precautions appropriate to handle MOS devices is recommended (*"Handling MOS Devices"*).

SAA7151B

CHARACTERISTICS

 V_{DD} = 4.5 to 5.5 V; T_{amb} = 0 to 70 $^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD}	supply voltage range (pins 5, 18, 28, 37, 52)		4.5	5	5.5	V
I _{DD}	total supply current (pins 5, 18, 28, 37, 52)	$V_{DD} = 5 V$; inputs LOW;				
		outputs not connected	-	100	250	mA
l ² C-bus, S	DA and SCL (pins 40 and 41)					
VIL	input voltage LOW		-0.5	-	1.5	V
VIH	input voltage HIGH		3	_	V _{DD} +0.5	V
I _{40, 41}	input current		-	_	±10	μA
I _{ACK}	output current on pin 40	acknowledge	3	_	-	mA
V _{OL}	output voltage at acknowledge	I ₄₀ = 3 mA	-	-	0.4	V
Data, cloc	k and control inputs (pins 3, 4, 6 to 17, 20 to	23, 27, 34, 64 and 68); F	igures	14 and 15		
VIL	LL27 input voltage (pin 27)	LOW	-0.5	-	0.6	V
VIH		HIGH	2.4	_	V _{DD} +0.5	V
VIL	other input voltages	LOW	-0.5	-	0.8	V
VIH		HIGH	2.0	_	V _{DD} +0.5	V
l _{leak}	input leakage current		-	-	10	μA
CI	input capacitance	data inputs; note 1	-	-	8	pF
		I/O high-impedance	-	-	8	pF
		clock inputs	-	-	10	pF
t _{SU.DAT}	input data set-up time	Fig.17	11	_	-	ns
t _{HD.DAT}	input data hold time		3	-	-	ns
YUV-bus,	HREF and VS outputs (pins 30, 42, 45 to 50	and pins 53 to 62), Figure	es 10, 1	4 and 15		
V _{OL}	output voltage LOW	notes 1 and 2	0	_	0.6	V
V _{OH}	output voltage HIGH		2.4	_	V _{DD}	V
CL	load capacitor		15	_	50	pF
LFCO out	put (pin 36)					•
Vo	output signal (peak-to-peak value)	note 2	1.4	_	2.6	V
V ₃₆	output voltage range		1	-	V _{DD}	V
Control ou	, J tputs (pins 24 to 26, 29, 31, 32, 33, 39, 63, 6	5 and 66); Figures 12, 16	and 17	7	4	-
Vol	output voltage LOW	notes 1 and 2	0	_	0.6	V
V _{OH}	output voltage HIGH		2.4	_	V _{DD}	V
CL	load capacitor		7.5	-	25	pF
						.

SAA7151B

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT			
Timing of	YUV-bus and control outputs	Figures 10, 12 and 13	1	1	1				
t _{OH}	output signal hold time	YUV, HREF, VS at $C_L = 15 \text{ pF};$	13	_	_	ns			
		controls at $C_L = 7.5 \text{ pF}$	13	-	_	ns			
t _{OS}	output set-up time	YUV, HREF, VS at $C_L = 50 \text{ pF};$	20	_	_	ns			
		controls at $C_L = 25 \text{ pF}$	20	-	-	ns			
t _{SZ}	data output disable transition time	to 3-state condition	22	-	-	ns			
t _{ZS}	data output enable transition time	from 3-state condition	20	_	_	ns			
Chromina	nce PLL								
f _C	catching range		±400	-	-	Hz			
Crystal oscillator		Figures 19 and 20; note	Figures 19 and 20; note 3						
f _n	nominal frequency	3rd harmonic	-	24.576	-	MHz			
Δf / f _n	permissible deviation fn		-	-	±50	10-6			
	temperature deviation from fn		-	-	±20	10 ⁻⁶			
X1	crystal specification:								
	temperature range T _{amb}		0	-	70	°C			
	load capacitance CL		8	-	-	pF			
	series resonance resistance R _S		_	40	80	Ω			
	motional capacitance C1		_	1.5±20%	-	fF			
	parallel capacitance C ₀		-	3.5±20%	_	pF			
Line locke	ed clock input LL27 (pin 27)	Fig.9 and 17							
t _{LL27}	cycle time	note 4	35	-	39	ns			
t _p	duty factor	t _{LL27H} /t _{LL27}	40	50	60	%			
t _r	rise time		-	-	5	ns			
t _f	fall time		_	-	6	ns			

Notes

1. Data output signals are Y7 to Y0 and UV7 to UV0. All other are control signals.

2. Levels are measured with load circuit. YUV-bus, HREF and VS outputs with 1.2 k Ω in parallel to 50 pF at 3 V (TTL load);

LFCO output with 10 k Ω in parallel to 15 pF and other outputs with 1.2 k Ω in parallel to 25 pF at 3 V (TTL load).

3. Recommended crystal: Philips 4322 143 05291.

4. t_{SU} , t_{HD} , t_{OH} and t_{OD} include t_r and t_f .

OEDY	OEDC	FEIN	Y(7:0)	UV(7:0)							
0	0	0	Z	Z							
0	1	0	Z	active							
1	0	0	active	Z							
1	1	0	Z	Z							
Х	Х	1	Z	Z							

SAA7151B

I²C-BUS FORMAT

S	SLAVE ADI	DRESS	А	SUBADDRESS	Α	DATA0	А		DATAn	А	Р			
S		=	sta	start condition										
SLA ADD	VE DRESS	=	100	1000 101X (IICSA = LOW) or 1000 111X (IICSA = HIGH)										
А		=	ack	acknowledge, generated by the slave										
SUB	ADDRESS ⁽¹⁾	=	sub	subaddress byte (Table 5)										
DAT	A	=	dat	a byte (Table 5)										
Ρ		=	sto	p condition										
х		=	read/write control bit X = 0, order to write (the circuit is slave receiver) X = 1, order to read (the circuit is slave transmitter)											
Note														

1. If more than 1 byte DATA are transmitted, then auto-increment of the subaddress is performed.

Remarks: - Prior to reset of the IC all outputs are undefined.

- After power-on reset, the control register 12 (hex) is set to 00 (hex).

Table 5I²C-bus; DATA for status byte (X in address byte = 1; slave address 8B (hex) at IICSA = LOW or 8F (hex) at
IICSA = HIGH)

FUNCTION				[DATA			
	D7	D6	D5	D4	D3	D2	D1	D0
status byte	STTC	HLCK	FIDT	FSST1	FSST0	CDET2	CDET1	CDET0

Function of the bits:									
STTC	Status time constant (to be used for gogical combfilter SAA7152)								
		0 = TV mo	ode; 1 = VC	R mode					
HLCK	Horizontal PLL information:	0 = HPLL	locked; 1 =	= HPLL un	locked				
FIDT	Field information	0 = 50 Hz	system de	tected; 1 =	= 60 Hz system detected				
FSST1 to FSST0	Fast switching output mode:	FSST1	FSST0	mode					
		0	0	RGB; FS	SI = HIGH (pin 68)				
		0	1	Y/C; FSI	= LOW (pin 68)				
		1	0	fast swit	ching (toggle)				
		1	1	not used	l				
CDET2 to CDET0	Identified colour standard	CDET2	CDET2	CDET2	standard				
		0	0	0	PAL-B/G, -H, -I; 50 Hz				
		0	0	1	PAL-N; 50 Hz				
		0	1	0	SECAM; 50 Hz				
		0	1	1	PAL-M; 60 Hz				
		1	0	0	PAL 4.43; 60 Hz				
		1	0	1	NTSC-M; 60 Hz				
		1	1	0	NTSC 4.43; 60 Hz				
		1	1	1	black/white				

SAA7151B

Digital multistandard colour decoder with SCART interface (DMSD2-SCART)

Table 6I²C-bus; subaddress and data bytes for writing (X in address byte = 0; slave address 8A (hex) atIICSA = LOW or 8E at IICSA = HIGH)

function	subaddress byte					data	byte			
function	Subaddress	byte	D7	D6	D5	D4	D3	D2	D1	D0
increment delay		00	IDEL7	IDEL6	IDEL5	IDEL4	IDEL3	IDEL2	IDEL1	IDEL0
H-sync HSY begi		01	HSYB7	HSYB6	HSYB5	HSYB4	HSYB3	HSYB2	HSYB1	HSYB0
H-sync HSY stop		02	HSYS7	HSYS6	HSYS5	HSYS4	HSYS3	HSYS2	HSYS1	HSYS0
H-clamp HCL beg	p	03	HCLB7	HCLB6	HCLB5	HCLB4	HCLB3	HCLB2	HCLB1	HCLB0
H-clamp HCL sto		04	HCLS7	HCLS6	HCLS5	HCLS4	HCLS3	HCLS2	HCLS1	HCLS0
H-sync after PHI1		05	HPHI7	HPHI6	HPHI5	HPHI4	HPHI3	HPHI2	HPHI1	HPHI0
luminance contro	-	06	BYPS	PREF	BPSS1	BPSS0	BFBY	CORI	APER1	APER0
hue control		07	HUEC7	HUEC6	HUEC5	HUEC4	HUEC3	HUEC2	HUEC1	HUEC0
miscellaneous co		08	CSTD2	CSTD1	CSTD0	CKTQ4	CKTQ3	CKTQ2	CKTQ1	CKTQ0
miscellaneous co	ivity	09	OSCE	LFIS1	LFIS0	CKTS4	CKTS3	CKTS2	CKTS1	CKTS0
PAL switch sensit		0A	PLSE7	PLSE6	PLSE5	PLSE4	PLSE3	PLSE2	PLSE1	PLSE0
SECAM switch se		0B	SESE7	SESE6	SESE5	SESE4	SESE3	SESE2	SESE1	SESE0
miscellaneous co	ntrols #4	0C	FSAU	GPSI2	GPSI1	CGFX	AMPF3	AMPF2	AMPF1	AMPF0
miscellaneous co		0D	COLO	CHSB	GPSW0	SUVI	SXCR	FSDL2	FSDL1	FSDL0
miscellaneous co		0E	CCIR	COFF	OEHS	OEVS	UVSS	CHRS	CDMO	CDPO
miscellaneous co		0F	AUFD	FSEL	HPLL	SCEN	VTRC	MUIV	FSIV	WIND
miscellaneous co		10	ASTD	OFTS	IPBP	CDVI	YDEL3	YDEL2	YDEL1	YDEL0
chroma gain refer		11	CHCV7	CHCV6	CHCV5	CHCV4	CHCV3	CHCV2	CHCV1	CHCV0
miscellaneous co		12	OEDY	OEDC	VNOI1	VNOI0	BFON	BOFL2	BOFL1	BOFL0

Function of the bits of Table 6

IDEL7 to IDEL0	Incr	eme	nt de	lay tir	ne, st	ep si	ze =	4/LL	27 = 148 ns ⁽¹⁾	
"00"	D7	D6	D5	D4	D3	D2	D1	D0	decimal number	note
	1	1	1	1	1	1	1	1	4 45 440	minimum –148 ns
	1	0	0	1	0	0	1	0	-1 to -110	–16.3 μs (outside available range)
	1	0	0	1	0	0	0	1	111 += 011	–16.44 μs
	0	0	1	0	1	0	1	0	–111 to –214	-31.7 μs (maximum value at FSEL = 1)
	0	0	1	0	1	0	0	1	-215	$-31.85 \ \mu s$ (outside central counter range at FSEL = 1 ⁽²⁾)
	0	0	1	0	1	0	0	0	-216	$-32.0 \ \mu s$ (maximum value at FSEL = 0 ⁽²⁾)
	0	0	1	0	0	1	1	1	-217 to -256	$-32.148 \ \mu s$ (outside central counter range at FSEL = 0 ⁽²⁾)
	0	0	0	0	0	0	0	0		$-37.9 \mu s$ (outside central counter ⁽²⁾)
HSYB7 to HSYB0	Hor	izonta	al syn	ic beg	in, ste	p siz	e = 2	/LL27	7 = 74 ns	
HSYS7 to HSYS0	Hori	izonta	al syn	ic stop	o, step	size	= 2/L	L27	= 74 ns	
"01" and "02"	D7	D6	D5	D4	D3	D2	D1	D0	decimal multiplier	note
	1	0	1	1	1	1	1	1	191 to 1	-14.2 μs (maximum negative value)
	0	0	0	0	0	0	0	1		–74 ns
	0	0	0	0	0	0	0	0	0	0 equals reference value
	1	1	1	1	1	1	1	1		+74 ns
	1	1	0	0	0	0	0	0		+4.7 μs
HCLB7 to HCLB0	Hori	izonta	al clai	mp be	egin, st	tep si	ze =	2/LL2	27 = 74 ns	
HCLS7 to HCLS0	Hori	izonta	al clai	mp sto	-	-			7 = 74 ns	
"03" and "04"	D7	D6	D5	D4	D3	D2	D1	D0	decimal multiplier	note
	0	1	1	1	1	1	1	1	127 to 1	-9.4 μs (maximum negative value)
	0	0	0	0	0	0	0	1		-74 ns
	0	0	0	0	0	0	0	0	0	0 equals reference value
	1	1	1	1	1	1	1	1	_1 to _128	+74 ns
	1	0	0	0	0	0	0	0		+9.5 μs (maximum positive value)
HPHI7 to HPHI0									= 296 ns	
"05"	D7		D5	D4	D3		D1	D0	decimal multiplier	note
	0	1 1	1 1	1	1 1	1	1 0	1	+127 to +109) forbidden (outside available central
	0		1	0	1	1	0	1 0) counter range) -32 μs (maximum negative value)
	0	1 0	0	0 0	0	0	0	0 1	+108 to +1	-0.296 ns
	0	0	0	0	0	0	0	0	0	0 equals reference value
	1	1	1	1	1	1	1	1		+0.296 μs
	1	0	0	1	0	1	0	1	-1 to -107	+31.7 μs (maximum positive value)
	1	0	0	1	0	1	0	0	_108 to _128) forbidden (outside available central
	1	0	0	0	0	0	0	0	-100 10 -120) counter range)

BYPS	Input mo	de select l	oit:	0 = CVB	S mode (chro	ma trap active)					
"06"						roma trap by-passed)					
PREF	Use of pr	Use of pre-emphasis (to be used if chrominance trap is active):									
		0 = pre-filter bypassed; 1 = pre-filter on									
						· · ·					
BPSS1 to BPSS0	Aperture	bandpass	to select d	lifferent cer	ntre frequencie	es (Figures 25 to 40):					
	BPS	S1	BPSS0		centre freque	ency					
	0		0		4.1 MHz						
	0		1		3.8 MHz						
			0 1		2.6 MHz						
			•		2.9 MHz						
BFBY	Bandfilter		witching:			r active; 1 = bandfilter bypassed					
CORI	Coring fu				0 = coring of	ff; $1 = \pm 1$ LSB coring					
APER1 to APER0	Aperture	factor (Fig	gures 25 to	40):	1						
	APE	R1 APE	ER0		factor						
	0	0			0 0.25						
	0	1									
	1	0			0.5						
HUE7 to HUE0			179 6º to	190.00 .001	·	s 7F to 80 (hex); 0° equals 00.					
"07"			170.0 10 -	100.0 , equ		s // 10 00 (nex), 0° equais 00.					
CSTD2 to CSTD0	Forced co	olour stan	dard of inpu	ut signal;							
"08"	CST		CSTD1	CSTD0	standard						
	0	()	0	PAL-B/G, -H	, -I: 50 Hz					
	0	(C	1	PAL-N; 50 H						
	0		1	0	SECAM; 50						
	0		1	1	PAL-M; 60 H						
	1)	0	PAL 4.43; 60						
)	1	NTSC-M; 60						
			1 1	0 1	NTSC 4.43; black/white	60 HZ					
	 			، 							
CKTQ4 to CKTQ0	Colour ki	ler thresh	old QAM (F	PAL/NTSC)	:						
	CKTQ4	CKTQ3	CKTQ2	CKTQ1	CKTQ0						
	1	1	1	1	1	approximately -30 to -24 dB					
	1	0	0	0	0	-24 dB to $-18 dB$					
	0	0	0	0	0						

OSCE "09"	External UV c	ffset comp	ensation: 0	= disabled; 1 = en	abled					
LFIS1 to LFIS0	Chrominance	gain contro	 ol (AGC filte	 er):						
	LFIS1	LFIS0		control of loc	op filter time	constant				
	0	0		slow						
	0	1		medium						
	1	0		fast						
	1	1		actual gain,	stored (for te	st purposes only)				
CKTS4 to CKTS0	Colour killer ti	nreshold SE	ECAM as p	reviously described	d under CKT	Q subaddress "08"				
PLSE7 to PLSE0 "0A"		PAL switch sensitivity from LOW to HIGH (HIGH means immediate sequence correction), equals FF to 00 (hex), MEDIUM equals 80.								
SESE7 to SESE0 "0B"		SECAM switch sensitivity from LOW to HIGH (HIGH means immediate sequence correction), equals FF to 00 (hex), MEDIUM equals 80.								
FSAU; GPSI2,	Set port output	uts (general	purpose s	witching, internal)						
and GPSI1	FSAU	GPSI2	GPSI1	output GPS	W2 (pin 25)	output GPSW1 (pin 24)				
"0C"	0	0	0	LOW		LOW				
	0	0	1	LOW		HIGH				
	0	1	0	HIGH		LOW				
	0	1	1	HIGH		HIGH				
	1	х	х	status bit FS	ST1 set	status bit FSST0 set				
CGFX	Chrominance	gain pre-de	eterminatio	n: 0 = gain controll	ed via loop; 1	1 = gain set by AMPF-bits				
AMPF3 to AMPF0	Chrominance	amplificatio	on factor							
	AMPF3	AMPF2	AMPF1	AMPF0	gain					
	0	0	0	0	–6 dB					
	0	1	0	0	0 dB					
	0	1	0	1	+1.5 dB					
		•				dB (approximately 1.5 dB steps)				
	1	1	1	1	+17 dB					

COLO	Colour on hite			0 000	killer automatically anablady							
"0D"	Colour-on bit:			0 = colour-killer automatically enabled; 1 = forced colour-on.								
CHSB	Chrominance	(UV) outpu	ut code:		0 = two's complement; $1 =$ straightly binary							
GPSW0	General purpo				0 = LOW; 1 = HIGH							
SUVI	SECAM UV o	-			0 = U and V positive; $1 = U$ and V negative							
SXCR	SECAM cross				0 = off; 1 = on							
FDSL2 to FDSL0	Fast switching	g delay adju	ustment in 37 ns	s steps:								
	FDSL2	FDSL1	FDSL0	delay								
	0	0	0	0								
	0	0	1	37 ns								
	0	1	0	74 ns								
	0	1	1	111 ns								
	1	0	0		egative delay)							
	1	0	1 0	–111 ns –74 ns								
	1	1 1	1	-74 ns -37 ns								
CCIR	Set CCIR mod	de: 0 = digi	tal TV mode (D		R mode							
"0E"												
COFF			on; $1 = colour$									
OEHS	Enable horizo	ntal sync o	outputs HS and I	HREF:	0 = output high-impedance; 1 = HS and HREF enabled							
OEVS	Enable vertica	al sync outp	out VS:	0 = output	high-impedance; 1 = VS enabled							
UVSS	Select UV pix	el sample:			tel after U/V signal has changed; d pixel (free of crosstalk signals)							
CHRS	S-Video input	mode:		 0 = chrominance signal from CVBS or CUV input and controlled by BYPS (subaddress 06); 1 = S-Video mode; chrominance signal from CUV input 								
CDMO, CDPO	Chrominance	delay:	CDMO	CDPO								
			0	0	no delay							
			1	Х	-37 ns (negative delay)							
			0	1	+37 ns							
AUFD "0F"	Automatic fiel	d detection	:		election by FSEL-bit; atic field detection							
FSEL	Field select (A	\UFD-bit =	0):	0 = 50 Hz 1 = 60 Hz	· · · · · · · · · · · · · · · · · · ·							
HPLL	Horizontal PL	L:		0 = PLL clo	osed; 1 = PLL open, horizontal frequency fixed							
SCEN	Sync and clar	nping pulse	e enable:		0 = HCL and HSY outputs HIGH (pins 26 and 29); 1 = HCL and HSY outputs active.							
VTRC	VTR/TV mode	e select:			0 = TV mode (slow time constant); 1 = VTR mode (fast time constant).							
MUIV	MUXC signal	invertion:			0 = inverted; 1 = not inverted							
FSIV	Fast switch in		nversion:		0 = not inverted; 1 = inverted							
1	1	-										
ASTD "10"	Automatic standard switching:								0 = off; 1 = on			
----------------	---	--------	------	--------	-------	--------	--------	--------------	------------------	---	--	--
OFTS IPBP	Select output format: External UV signal interpolation filter:									0 = 4 : 1 : 1 format; 1 = 4 : 2 : 2 format. 0 = active; 1 = bypassed		
CDVI	Chrominance PLL filter selection for:									0 = VTR or TV source; 1 = fast time constant for FSC-PLL (only for special applications)		
YDEL3 to YDEL0	Lum	inan	ce d	elay c	compe	ensat	ion ir	יייי ז 37	ns steps:	_		
	YDE	L3		YDE	L2	YD	EL1		YDEL0		delay	
	0 0			0 1		0 1			0 1)	0 to 259 ns (step 0 to 7)	
	1 1			0 1		0 1			0 1)	-296 to -37 ns (negative delay; step -8 to -1)	
CHCV7 to CHCV0	Chroma gain reference value								·			
"11"			-	D4			D1	D0	gain			
	1	1 :	1	1	1	1 :	1	1	maximum ga to	ain)	
	1	0 :	1	1	0	0 :	1	1	DTV level to)) default programmed values	
	0	0 :	1	1	1	1 :	0	1	CCIR level to) dependent on application	
	0	0	0	0	0	0	0	0	minimum gai	in		

SAA7151B

OEDY "12"	Enable Y signals on YUV-bus:			0 = 0	0 = output high-impedance; 1 = output active (dependent on FEIN)					
OEDC	Enable UV si	: 0 = 0	0 = output high-impedance; 1 = output active (dependent on FEIN)							
VNOI1, VNOI0	Vertical noise	reduction r	mode:		VNOI1	 VNOI0				
					0	0	normal			
					0	1	searching			
					1	0	free-running			
					1	1	bypassed			
BFON	Bottom flutter	compensa	tion sw	itching: 0	= off; 1 = o	n (controlled	by BOFL-bit)			
BOFL2 to BOFL0	Bottom flutter	compensa	tion							
	BOFL2	BOFL1	BO	-L0	start at lin	ne number				
	0	0	0		297 for PA	L (247 for NT	SC; active to end of field)			
	0	0	1		298 for PA	L (248 for NT	SC; active to end of field)			
	1	1	0			•	SC; active to end of field)			
	1	1	1		304 for PA	L (254 for NT	SC; active to end of field)			
	The bottom flutter circuit is able to compensate for horizontal pha						se jump of up to $\pm 16~\mu$ s.			
Note: The bottom f	lutter gate is ac	tive at								
- HPLL is lo	ocked									
- HPLL in V					vertical pulse					
- the vertical noise limiter (VNL)										
is in the V							programmable by BOFL(2-0)			
- gating is s		- 40)								
BFON-bit	= 1 (subaddress 12)					gate 2	gate 2			
	Gate 2	Gate 1		HPLL fu	nction		000 111			
	0	0		normal						
	1	0			disabled					
	0			double speed		gate 1				
	1	1		unused						

Notes

1. an internal sign-bit D8 set to HIGH indicates that all values are always negative

2. H-PLL does not operate in this condition; the system clock frequency is set to a value fixed by the last update and is within ±7.1 % of the nominal frequency.

Fig.22 Frequency response of chroma stop filter in colour-difference mode for 50 Hz PAL. Filter is only active in fast switching mode, but bypassed in RGB mode. The selected filter is dependent on actual detected colour standard.

colour-difference mode for 60 Hz NTSC. Filter is only active in fast switching mode, but bypassed in RGB mode. The selected filter is dependent on actual detected colour standard.

colour standard.

SAA7151B

Digital multistandard colour decoder with SCART interface (DMSD2-SCART)

MEH311 18 23h 12 33h ٧_Y (dB) 6 03h 13h 0 23h 33h -6 13h 03h -12 -18 -24 50 Hz PAL/SECAM; pre-filter off -30 0 2 3 4 5 6 1 7 f_Y (MHz) Fig.27 Maximum luminance peaking control as a function of four different aperture centre frequencies controllable by subaddress byte 06; aperture factor 1; coring off; chroma trap on; pre-filter off; and bandfilter on.

MEH315 18 12 V_{Y} 33h 03h (dB) 23h 13h 13h 6 03h 0 23h 33h -6 -12 -18 -24 60 Hz NTSC; pre-filter off -30 0 1 2 3 4 5 6 7 f_Y (MHz) Fig.31 Maximum luminance peaking control as a function of four different aperture centre frequencies controllable by subaddress byte 06; aperture factor 1; coring off; chroma trap on; pre-filter off; and bandfilter on.

th

SAA7151B

g.34 2.6 MH2 furninance peaking control as a function of four different aperture factors controllable by subaddress byte 06; pre-filter off; coring off and bandpass filter on.

PROGRAMMING EXAMPLE

Coefficients to set operation for application circuits Figures 19, 20 and 21. Values recommended for PAL CVBS input signal and 4:2:2 CCIR output signal (all numbers of the Table 6 are hex values).

 Table 7
 Recommended default values (note 1)

SUBADDRESS	BIT NAME	FUNCTION	VALUE (HEX)
00	IDEL(7-0)	increment delay	4D
01	HSYB(7-0)	horizontal sync HSY begin	3D
02	HSYS(7-0)	horizontal sync HSY stop	0D
03	HCLB(7-0)	horizontal clamping HCL begin	F3
04	HCLS(7-0)	horizontal clamping HCL stop	C6
05	HPHI(7-0)	horizontal sync after PHI1	FB
06	BYPS, PREF, BPSS(1-0) BFBY, CORI, APER(1-0)	luminance bandwidth control:	02 (note 2)
07	HUEC(7-0)	hue control (0 degree)	00
08	CSTD(2-0), CKTQ(4-0)	miscellaneous controls #1	09
09	OSCE, LFIS(1-0), CKTS(4-0)	miscellaneous controls #2	C0
0A	PLSE(7-0)	PAL switch sensitivity	4D
0B	SESE(7-0)	SECAM switch sensitivity	40
0C	FSAU, GPSI(2-1), CGFX, AMPF(3-0)	miscellaneous controls #3	80
0D	COLO, CHSB, GPSW0, SUVI, SXCR, FSDL(2-0)	miscellaneous controls #4	60
0E	CCIR, COEF, OEHS, OEVS UVSS, CHRS, CDMO, CDPO	miscellaneous controls #5	B4
OF	AUFD, FSEL, HPLL, SCEN, VTRC, MUIV, FSIV, WIND	miscellaneous controls #6	9F
10	ASTD, OFTS, IPBP, CDVI, YDEL(3-0)	miscellaneous controls #7	C0
11	CHCV(7-0)	nominal chrominance gain	4F
12	OEDY, OEDC, VNOI(1-0), BFON, BOFL(2-0)	miscellaneous controls #8	C2

Notes

1. Slave address is 8A (hex) at IICSA = LOW or 8E (hex) at IICSA = HIGH.

2. Dependent on applications (Figures 25 to 40).

PACKAGE OUTLINE

PLCC68: plastic leaded chip carrier; 68 leads

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT188-2	112E10	MO-047AC				-92-11-17 95-03-11

SAA7151B

SOT188-2

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all PLCC packages.

The choice of heating method may be influenced by larger PLCC packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our *"Quality Reference Handbook"* (order code 9397 750 00192).

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

Wave soldering

Wave soldering techniques can be used for all PLCC packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

SAA7151B

DEFINITIONS

Data sheet status					
Objective specification	ation This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application information					
Where application information is given, it is advisory and does not form part of the specification.					

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.