INTEGRATED CIRCUITS

Preliminary specification File under Integrated Circuits, IC02 March 1991

SAA5191

FEATURES

- · Adaptive data slicer
- Crystal-controlled data clock regeneration with a bit rate of 6.9375 MHz
- Adaptive sync separator, horizontal phase detector and 13.5 MHz VCO to provide display phase locked loop (PLL)
- TV synchronization at teletext mode

QUICK REFERENCE DATA

GENERAL DESCRIPTION

The SAA5191 is a bipolar integrated circuit that extracts teletext data from the video signal (CVBS), regenerates the teletext clock (TTC) and synchronizes the text display to the television signals (VCS). This device operates in conjunction with the Digital Video Teletext (back-end) Decoder (DVTB - SAA9042A) or any other compatible device.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage (pin 16)	-	12	-	V
I _P	supply current	-	70	-	mA
V _{i CVBS}	CVBS input signal on pin 27 (peak-to-peak value)				
	at pin 2 LOW	_	1	-	V
	at pin 2 open-circuit	_	2.5	-	V
Vo	outputs signals TTC and TTD (peak-to-peak value, pins 14, 15)	2.5	3.5	4.5	V
V _{F13}	13.5 MHz clock output signal (peak-to-peak value pin 17)	1	2	3	V
V _{SYNC}	video sync output signal (peak-to-peak value, pin 1)	-	_	1	V
	SYNC output signal TCS	200	450	650	mV
VCS	video composite sync level on output pin 25				
	LOW	_	_	0.4	V
	HIGH	2.4	-	5.5	V
T _{amb}	operating ambient temperature	0	-	+70	°C

ORDERING AND PACKAGE INFORMATION

EXTENDED TYPE	PACKAGE				
NUMBER	PINS	PIN POSITION	MATERIAL	CODE	
SAA5191	28	DIL	plastic	SOT117 ⁽¹⁾	

Note

1. SOT117-1;1996 November 14

SAA5191

PIN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28

SAA5191

PI	Ν	Ν	IN	IG	

SYMBOL

	PIN CONFIGURA	TION
DESCRIPTION		
sync output signal to TV (positive or negative going)		
level select input of video input (LOW equals 1 V)		
video filtering capacitor of HF loss compensation		
HF storage capacitor		
amplitude capacitor		
zero level capacitor	STTV 1	28 TCS
external data current input (note 1)	VILS 2	27 CVBS
data timing capacitor for the adaptive data slicer	C _{filt} 3	26 C _{BL}
clock phase detector capacitor		
blanking insertion input	C _{store} 4	25 VCS
13.875 MHz crystal (double of data rate)	C _{ampl} 5	24 CT
6.9375 MHz clock frequency filter	C _{zero} 6	23 R _T
ground (0 V)	EXD 7	22 PL
teletext clock output (for computer controlled teletext)	C _{time} 8	A5191 21 C _{hor}
teletext data output (for computer controlled teletext)	C _{CLK} 9	20 OSCI
+12 V supply voltage		19 C _{VCR}
13.5 MHz VCO output (for sandcastle generation)		
oscillator output to series LC-circuit or crystal	XTAL 11	18 OSCO
short time constant capacitor at video recorder mode (note 2)	CLF 12 GND 13	17 F13 16 V _P
oscillator input from series LC-circuit or crystal		
horizontal phase capacitor / VCR mode	TTC 14	15 TTD
sandcastle input (generated in CCT)		MEH150
timing resistor for pulse generator		
timing capacitor for pulse generator		
video composite sync output to CCT		
black level capacitor		
composite video input signal from TV	Fig.2 Pin c	configuration.
text-composite/scan-composite sync input (TSC/SCS)	Ŭ	-

F

STTV

VILS

 C_{filt}

C_{store}

Campl Czero

EXD

Ctime

 $\mathsf{C}_{\mathsf{CLK}}$

CBB

XTAL

CLF

GND

TTC

TTD

VP

F13

OSCO

C_{VCR}

OSCI

Chor PL

R_T CT

VCS

C_{BL}

CVBS

Notes

TCS

1. Sliced teletext data from external: active HIGH level (current), low impedance input.

2. While the loop is locking up.

SAA5191

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _P supply voltage (pin 16)		0	13.2	V
V ₅	voltage on pin 5	0	5.5	V
T _{stg}	storage temperature range	-20	125	°C
T _{amb}	operating ambient temperature range	0	+70	°C

CHARACTERISTICS

 V_P = 12 V; T_{amb} = 25 °C and measurements taken in Fig.3, unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	supply voltage range (pin 16)		10.8	12.0	13.2	V
I _P	supply current		50	70	105	mA
Video input	, sync separator and data slicer	$Z_{S} \le 250 \ \Omega$		•		
V _{i CVBS}	input signal sync to white (peak-to-peak value, pin 27)	$V_2 = LOW$	0.7	1	1.4	V
		$V_2 = HIGH$	1.75	2.5	3.5	V
	sync amplitude (peak-to-peak value)		0.1	_	1	V
	data slicing level	$V_2 = LOW$	0.3	0.46	0.7	V
		$V_2 = HIGH$	0.75	1.15	1.75	V
V ₂	input voltage LOW (pin 2)		0	-	0.8	V
	input voltage HIGH	open-circuit equals HIGH	2.0	_	5.5	V
I ₂	input current LOW		0	-	-150	μA
	input current HIGH	$V_2 < 5.5 V$	0	-	1	mA
Teletext dat	ta output (TTD)	•				
V ₂₂	phase lock pulse (PL) input voltage (peak-to-peak value, pin 22)	phase locked	0	-	3	V
		phase unlocked	3.9	_	5.5	V
V _{o TTD}	data output signal on pin 15 (peak-to-peak value)		2.5	3.5	4.5	V
V ₁₅	DC output voltage	mean level	3	4	5	V
CL	load capacitance on pin 15		_	_	40	pF
t _r , t _f	rise and fall time		20	30	45	ns
Teletext clo	ock output (TTC)	·				
$V_{0 TTC}$	clock output signal on pin 14 (peak-to-peak value)		2.5	3.5	4.5	V
V ₁₄	DC output voltage	mean level	3	4	5	V
CL	load capacitance on pin 14		-	-	40	pF
t _r , t _f	rise and fall time		20	30	45	ns
t _d	delay time of falling edge relative to other edges of TTD		-	-	± 20	ns

SAA5191

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Text/ scan	composite sync input (TCS/SCS)			1		1
V ₂₈	input voltage LOW for $\overline{\text{TCS}}$ (pin 28)		0	_	0.8	V
	input voltage HIGH for TCS		2.0	_	7.0	V
	input voltage LOW for SCS		0	-	1.5	V
	input voltage HIGH for SCS		3.5	-	7.0	V
I ₂₈	input current	V ₂₈ = 0 to 7 V	-40	-70	-100	μA
		$V_{28} = 10$ to V_P	_	-	± 5	μA
SYNC outp	ut buffer		·			
Vo	CVBS sync output signal on pin 1 (peak-to-peak value)	$R_{L1} = 1.2 \text{ k}\Omega \text{ to } V_P$	-	-	1	V
	TCS output signal	$R_{L1} = 1.2 \text{ k}\Omega \text{ to GND}$	200	450	650	mV
V ₁	DC output voltage at positive sync signal	$R_{L1} = 1.2 \text{ k}\Omega \text{ to GND}$	1.0	1.4	2.0	V
	DC output voltage at negative sync signal	R_{L1} = 1.2 k Ω to V_P	9.0	10.1	11.0	V
l ₁	output current		_	-	± 3	mA
Video com	posite sync output (VCS)					
V ₂₅	output voltage LOW (pin 25)		0	-	0.4	V
	output voltage HIGH		2.4	-	5.5	V
I ₂₅	output current LOW		0	-	0.5	mA
	output current HIGH		0	-	-1.5	mA
t _d	sync separator delay time		250	350	400	ns
Horizontal	phase detector and 13.5 MHz VCO					
V ₁₀	input voltage LOW (CBB), pin 10	blanking inserted	0	-	0.5	V
	blanking insertion HIGH	no blanking	1.0	-	5.5	V
I ₁₀	input current		_	-	-5	μA
Vo	13.5 MHz clock output signal (peak-to-peak value, pin 17)		1	2	3	V
V ₁₇	DC output voltage	maximum swing	4	-	8.5	V
CL	load capacitance on pin 17		_	-	40	pF
t _r , t _f	rise and fall time		10	_	30	ns

SAA5191

Fig.3 Test circuit and application circuit using LC-circuit or a crystal for VCO (clock F13).

PACKAGE OUTLINE

DIP28: plastic dual in-line package; 28 leads (600 mil)

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFERENCES		EUROPEAN	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT117-1	051G05	MO-015AH			92-11-17 95-01-14

SAA5191

SOT117-1

SAA5191

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.