SA7015

DESCRIPTION

The SA7015 is a monolithic low power, high performance frequency synthesizer fabricated in QUBiC BiCMOS technology. It is compatible with the main synthesizer of the SA7025. Featuring Fractional-N division with selectable modulo 5 or 8 implemented in the Main divider to allow the phase detector comparison frequency to be five or eight times the channel spacing. This feature reduces the overall division ratio yielding a lower noise floor and faster channel switching. The phase detectors and charge pumps are designed to achieve phase detector comparison frequencies up to 5MHz. A three modulus prescaler (divide by 64/65/72) is integrated on chip with a maximum input frequency of 1.0GHz at 3V. Programming and channel selection are realized by a high speed 3-wire serial interface.

FEATURES

- Operation up to 1.0GHz at 3V
- Fast locking by "Fractional-N" divider
- Internal charge pump and fractional compensation
- 3-line serial interface bus
- Low power consumption
- Supply voltage range 2.7 to 5.5V
- Excellent input sensitivity: V_{RF IN} = -20dBm

PIN CONFIGURATION

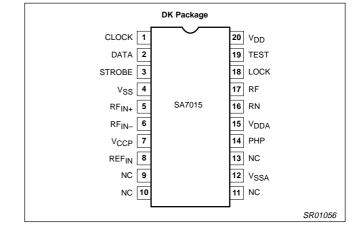


Figure 1. Pin Configuration

APPLICATIONS

- ADC (American Digital Cellular)
- Cellular radio
- Spread-Spectrum receivers
- Portable battery-powered radio equipment

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
20-Pin Plastic Shrink Small Outline Package (SSOP)	-40 to +85°C	SA7015DK	SOT266-1

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V	Supply voltage, V _{DD} , V _{DDA} , V _{CCP}	-0.3 to +6.0	V
V _{IN}	Voltage applied to any other pin	-0.3 to (V _{DD} + 0.3)	V
ΔV_{GND}	Difference in voltage between ground poins (these pins should be con- nected together)	-0.3 to +0.3	V
P _{TOT}	Total power dissipation		mW
T _{STG}	Storage temperature range	-65 to +150	°C
T _A	Operating ambient temperature range	-40 to +85	°C

NOTE: Thermal impedance (θ_{JA}) = 117°C/W. This device is ESD sensitive.

PIN DESCRIPTIONS

Symbol	Pin	Description
CLOCK	1	Serial clock input
DATA	2	Serial data input
STROBE	3	Serial strobe input
V _{SS}	4	Digital ground
RF _{IN}	5	Prescaler positive input
RFIN	6	Prescaler negative input
V _{CCP}	7	Prescaler positive supply voltage. This pin supplies power to the prescaler and RF input buffer
REF _{IN}	8	Reference divider input
NC	9	Not connected
NC	10	Not connected
NC	11	Not connected
V _{SSA}	12	Analog ground
NC	13	Not connected
PHP	14	Phase detector output
V _{DDA}	15	Analog supply voltage.
RN	16	Charge pump current setting; resistor to V _{SSA}
RF	17	Fractional compensation current setting; resistor to V _{SSA}
LOCK	18	Lock detector output
TEST	19	Test pin; connect to V _{DD}
V _{DD}	20	Digital supply voltage.

SA7015

SA7015

1GHz low-voltage single Fractional-N synthesizer

BLOCK DIAGRAM

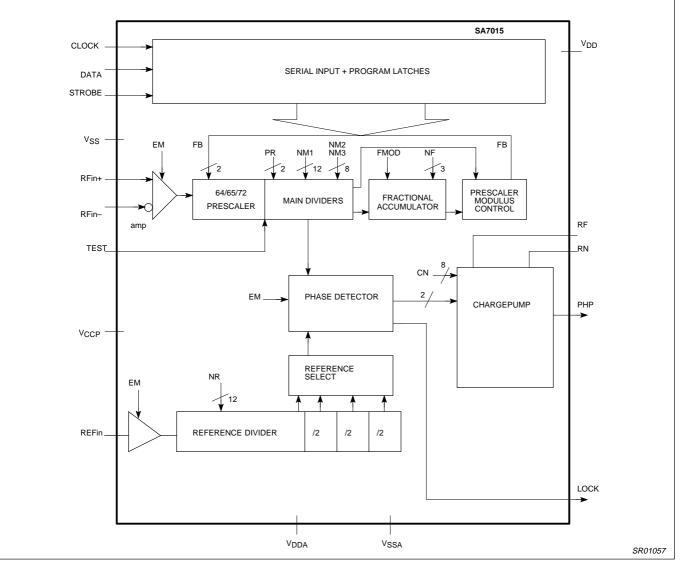


Figure 2. Block Diagram

Objective specification

1GHz low-voltage single Fractional-N synthesizer

DC ELECTRICAL CHARACTERISTICS

 V_{DD} = V_{DDA} = V_{CCP} = 3V; T_A = 25 $^{\circ}C,$ unless otherwise specified.

CVMDO!	DADAMETED		LIMITS			UNUTO	
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
V _{SUPPLY}	Recommended operating conditions	$V_{CCP} = V_{DD}, V_{DDA} \ge V_{DD}$	2.7		5.5	V	
ISTANDBY	Total standby supply currents	$EM = EA = 0, \ I_RN = I_RF = I_RA = 0$		50	500	μA	
ITOTAL	Operational supply current ⁴			5.5		mA	
Digital inpu	ts CLK, DATA, STROBE						
VIH	High level input voltage range		0.7xV _{DD}		V _{DD}	V	
V _{IL}	Low level input voltage range		0		0.3xV _{DD}	V	
Digital outp	uts LOCK	-					
V _{OL}	Output voltage LOW	I _O = 2mA			0.4	V	
V _{OH}	Output voltage HIGH	I _O = -2mA	V _{DD} -0.4			V	
Charge pun	np PHP (notes 3, 5):V _{DDA} = 3V/IRx = 25µA	A or $V_{DDA} = 5V/IRx = 62.5 \mu A$, V_{PHP} in ra	nge, unless	otherwise s	pecified		
		2.7V < V _{DDA} < 5.5V		25			
I _{RX}	Setting current for RN or RF	4.5V < V _{DDA} < 5.5V		62.5		μA	
V _{PHP}	Output voltage range		0.7		V _{DDA} -0.8	V	
	Output ourset7	$I_{RN} = -62.5 \mu A, V_{PHP} = V_{DDA}/2 \text{ (Note 7)}$	440	550	660		
IPHP	Output current ⁷	I _{RN} = -25μΑ, V _{PHP} =V _{DDA} /2	175	220	265	μA	
ΔI_{PHP}	Relative output current variation	I _{RN} = -62.5μA ^{1,7}		2	6	%	
1		I_{RN} = -25µA, V_{PHP} = $V_{DDA}/2$ ^(Note 7)			±50	μA	
I _{PHP_PN}	Output current matching	I_{RN} = -62.5µA, V_{PHP} = $V_{DDA}/2$			±65		
I _{PHP_I}	Output leakage current (pump not active)	V _{PHP} =0.7 to V _{DDA} -0.8	-20	0.1	20	nA	
Fractional of	compensation pump $V_{RN} = V_{DDA}, V_{PHP} =$	V _{DDA} /2					
	Fractional compensation output current	$I_{RF} = -62.5 \mu A; F_{RD} = 1 \text{ to } 7^{(Note 7)}$	-625	-400	-250	~ ^	
PHP_F	PHP vs F _{RD}	I _{RF} = -25μA;F _{RD} = 1 to 7	-250	-180	-100	nA	

SA7015

SA7015

AC ELECTRICAL CHARACTERISTICS

 $V_{DD} = V_{DDA} = 3V$; $T_A = 25^{\circ}C$; unless otherwise specified.

SVMPOL	DADAMETED	TEAT CONDITIONS	LIMITS				
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX		
Main divid	ler guaranteed and tested on an automat	ic tester. Some performance parameters m	ay be improv	ed by using o	ptimized layo	ut.	
4	Input signal frequency	Pin = -20dBm, Direct coupled input	0	1.0			
^f RF_IN		Pin = -20dBm, 1000pF input coupling		1.0		GHz	
$V_{RF_{IN}}$	Input sensitivity	f _{IN} = 1000MHz	-20		0	dBm	
Reference	e divider ($V_{DD} = V_{DDA} = 3V$ or $V_{DD} = 3V$	/ V _{DDA} = 5V)			-		
£		$2.7 < V_{DD}$ and $V_{DDA} < 5.5V$			25	NAL I-	
^f REF_IN	Input signal frequency	$2.7 < V_{DD}$ and $V_{DDA} < 4.5V$			30	MHz	
M	Input signal range, AC coupled	$2.7 < V_{DD}$ and $V_{DDA} < 5.5V$	500			mV _{P-P}	
V_{REF} IN		$2.7 < V_{DD}$ and $V_{DDA} < 4.5V$	300				
7				100		kΩ	
Z _{REF_IN}	Reference divider input impedance			2		pF	
Serial inte	rface						
f _{CLOCK}	Clock frequency				10	MHz	
t _{SU}	Set-up time: DATA to CLOCK, CLOCK to STROBE		30			ns	
t _H	Hold time; CLOCK to DATA		30			ns	
	Pulse width; CLOCK		30				
t _W	Pulse width; STROBE	B, C, D, E words	30			ns	
t _{SW}	Pulse width; STROBE		30			ns	
taur	Pulse width; STROBE	A word, PR = '01'	(NM2x65)/Fvco +Tw				
t _{SW}		A word, PR = '10'	[NM2x65 + (NM3+1)x72]/Fvco +Tw			7	

NOTES:

1. The relative output current variation is defined thus : $\frac{\Delta I_{OUT}}{I_{OUT}} = 2 \cdot \frac{(I2 - I1)}{I(I2 + I1)}$ with V1=0.7V, V2=Vdda-0.8V

2. FRD is the value of the fractional accumulator

3. Monotonicity is guaranteed with CN = 0 to 255

4. Power supply current measured in loop

5. Specification condition : CN = 255

6. The matching is defined by the sum of the P and the N pump for a given output voltage.

7. Limited analog supply voltage to 4.5 to 5.5V

8. For FIN <50MHz, low frequency operation requires DC coupling and a minimum input slew rate of 32V/µs.

9. Guaranteed by design

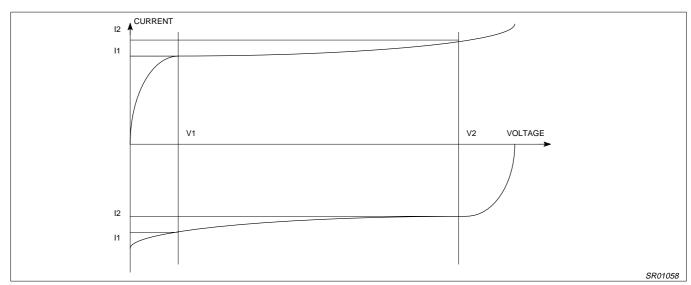
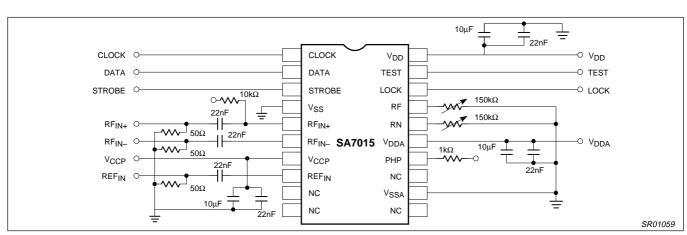



Figure 3. Relative Output Current Variation

SA7015

1GHz low-voltage single Fractional-N synthesizer

Figure 4. Test Circuit

AC TIMING CHARACTERISTICS

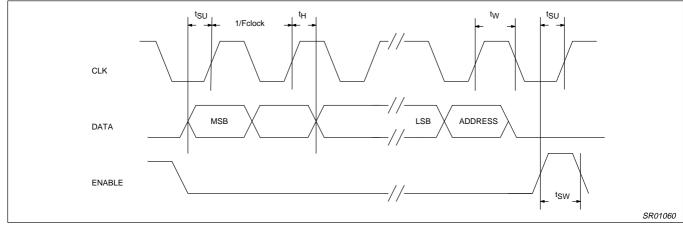


Figure 5. Serial Input Timing Sequence

FUNCTIONAL DESCRIPTION

Serial input programming

The serial input is a 3-wire input (CLOCK, STROBE, DATA) to program all counter ratios, DAC, selection and enable bits. The programming data is structured into 24- or 32-bit words; each word includes 1 or 4 address bits. Figure 3 shows the timing diagram of the serial input. When the STROBE=H, the clock is disabled and the data in the shift register remains stable. Depending on the 1 or 4 address bits the data is latched into different working registers or temporary registers. In order to fully program the synthesizer, 3 words must be sent: D,B, and A. Figure 4 and Table 1 show the format and the contents of each word. The E word is for testing purposes only. The E (test) word is reset when programming the D word. The data for CN and PR is strored by the B word in temporary registers. When the A word is loaded, the data of these temporary registers is loaded together with the main divider input. CN is only loaded from the temporary registers when a short 24-bit A0 word is issued. CN will be directly loaded by programming a long 32-bit A1 word. The flag LONG in the D word determines whether A0 (LONG='0') or A1 (LONG='1') format is applicable. The A word contains new data for the main divider.

Main divider synchronization

The A word is loaded only when a main divider synchronization signal is also active in order to avoid phase jumps when reprogramming the main divider. The synchronization signal is generated by the main divider. The signal is active while the NM1 divider is counting down from the programmed value. The new A word will be loaded after the NM1 divider output pulse will be sent to the main phase detector. The loading of the A word is disabled while the other dividers are counting up to their programmed values. Therefore, the new A word will be correctly loaded provided that the STROBE signal has been at an active high value for at least a minimum number of VCO cycles.

For PR='01' Tstrobe_min
$$\left(\frac{1}{F_{VCO}} (NM2.65) + T_{W}\right)$$

For PR='10' Tstrobe_min

$$\left(\frac{1}{F_{VCO}} (NM2.65) + (NM3 + 1) 72) + T_{W}\right)$$

SA7015

Reference Divider

The input signal on REF_in is amplified to logic level by a single-ended CMOS input buffer, which accepts low level AC coupled input signals. This input stage is enabled by the EM bit. Disabling means that all currents in the input stage are switched off. The reference divider consists of a programmable divider by NR (NR=4 to 4095) followed by a three bit binary counter. The 2 bit SM register determines which of the 4 output pulses is selected as the phase detector input.

Main Divider

The differential inputs are amplified (to internal ECL logic levels) and provide excellent sensitivity (-20dBm at 1.0GHz) making the prescaler ideally suited to direct interface to a VCO as integrated on the Philips front-end devices including RF gain stage, VCO and mixer. The internal four modulus prescaler feedback loop FB controls the selection of the divide by ratios 64/65/72, and reduces the minimum system division ratio below the typical value required by standard dual modulus (64/65) devices.

This input stage is enabled when serial control bit EM='1'. Disabling means that all currents in the prescaler are switched off.

The main divider consists of a 12 bit counter plus a sign bit. Depending on the serial input values NM1, NM2, NM3, NM4 and the prescaler select PR, the counter will select a prescaler ratio during a number of input cycles according to Tables 2 and 3.

The loading of the work registers NM1, NM2, NM3, NM4 and PR is synchronized with the state of the main counter, to avoid extra phase disturbance when switching over to another main divider ratio as explainded in the Serial Input Programming section.

At the completion of a main divider cycle, a main divider output pulse is generated which will drive the main phase comparator. Also, the fractional accumulator is incremented with NF. The accumulator works modulo Q. Q is preset by the serial control bit FMOD to 8 when FMOD='1'. Each time the accumulator overflows, the feedback to the prescaler will select on cycle using prescaler ratio R2 instead of R1. The mean division ratio over Q main divider will then be NQ=N+NF/Q

Programming a fraction means the prescaler with main divider will divide by N or N+1. The output of the main divider will be modulated with a fractional phase ripple. This phase ripple is proportional to the content of the fractional accumulator FRD, which is used for fractional current compensation.

1995 Sep 1

1GHz low-voltage single Fractional-N synthesizer

Internal Registers

Last in

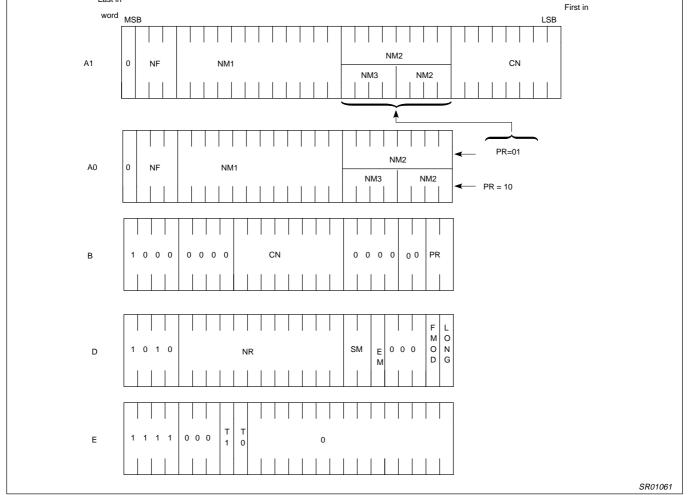


Figure 6. Serial Bus Timing Diagram

SA7015

Objective specification

SA7015

Table 2. Register Description

SYMBOL	BITS	FUNCTION	
NM1	12	Number of main divider cycles when prescaler modulus=64	
NM2	4 or 8	nber of main divider cycles when prescaler modulus=65	
NM3	4	Number of main divider cycles when prescaler modulus=72	
PR	2	Prescaler type in use PR="01": modulus 2 prescaler (64/65) PR="10": modulus 3 prescaler (64/65/72)	
NF	3	Fractional-N increment	
FMOD	1	Fractional-N modulus selection "1": modulo 8 "0": modulo5	
LONG	1	A word format selection "0": 24 bit A0 format "1": 32 bit A1 format	
CN	8	Binary current setting factor for the chargepump	
EM	1	Enable bit. "1": synthesizer is ON	
SM	2	Reference divider output selection SM="00": No extra division on reference divider SM="01": Extra divide by 2 SM="10": Extra divide by 4 SM="11": Extra divide by 8	
NR	12	Reference divider ratio	

Table 3. Prescaler Ratio

The total division ration from prescaler to the phase detector may be expressed as:		
if PR= '01' $N = (NM1 + 2) \times 64 + NM2 \times 65$		
if PR= '10' N = (NM1 + 2) x 64 + N2 x 65 + (NM3 + 1) x 72		
When the fractional accumulator overflows, the divide ratio is increased by 1		

Table 4. PR Modulus

PR		Bit capacity NM1 NM2 NM3		y .
	Modulus prescaler			NM3
01	2	12	8	-
10	3	12	4	4

SA7015

1GHz low-voltage single Fractional-N synthesizer

Phase Detector

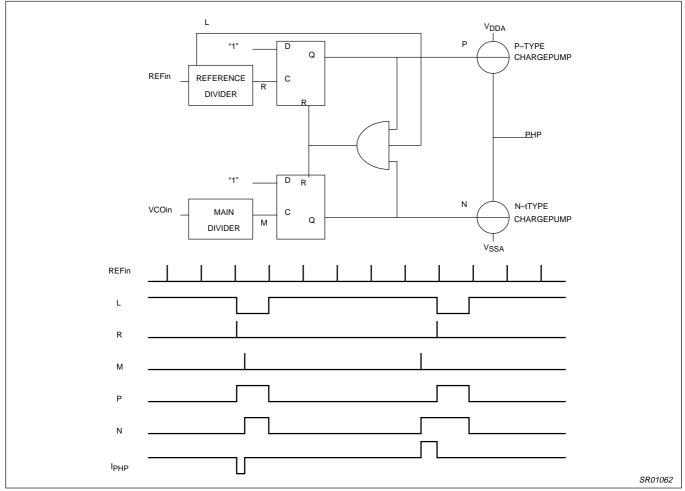


Figure 7. Phase Detector Structure with Timing

The phase detector is a two D-type flip-flop phase and frequency detector shown in Figure 7. The flip-flops are set by the negative edges of output signals of the dividers. The rising edge of the signal, L, will reset the flip-flops after both flip-flops have been set. Around zero phase error, this has the effect of delaying the reset for 1 reference input cycle. This avoids non-linearity or deadband around zero phase error. The flip-flops drive an on-chip chargepump. A source current from the chargepump indicates the VCO frequency will be increased; a sink current indicates the VCO frequency will be decreased.

Current Settings

The SA7015 has two current setting pins: RN and RF. The active chargepump current and the fractional compensation current are linearly dependent on the current connected between the current setting pin and V_{SSA} . The typical value R (current setting resistor)

can be calculated with the formula: $R = \frac{V_D}{V_D}$

The current can be set to zero by connecting the corresponding pin to V_{DDA}. All currents are off when the part is disabled through the EM bit of the serial interface.

Objective specification

SA7015

1GHz low-voltage single Fractional-N synthesizer

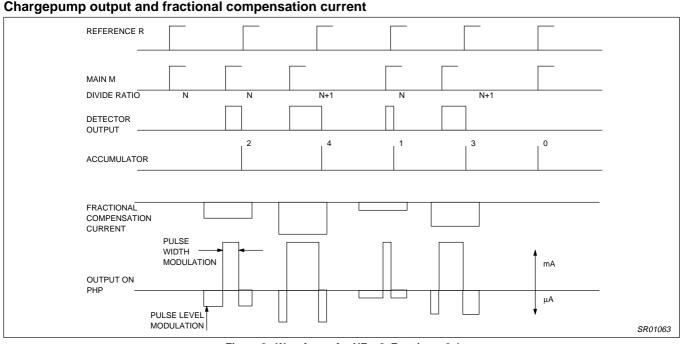


Figure 8. Waveforms for NF = 2, Fraction = 0.4

The chargepump on pin PHP is driven by the phase detector and the current value is determined by the current at pin RN and the CN DAC which is driven by a register of the serial input. The fractional compensation current is determined by the current at pin RF, the contents of the fractional accumulator FRD. The timing for the fractional compensation is derived from the reference divider. The current is on during one input reference cycle before and one cycle after the output signal to the phase comparator. Figure 8 shows the waveform for a typical case.

IPHP = INOMINAL + IFRACTIONAL_COMPENSATION

 $I_{NOMINAL} = CN * I_{RN}/32$: charge pump current

 $I_{FRACTIONAL_COMPENSATION}$ = FRD * $I_{RF}/128$: fractional compensation current.

Figure 9 shows that for a proper fractional compensation, the area of the fractional compensation current pulse must be equal to the area of the charge pump ripple output. This means that the current setting

on the input RN, RF is approximately
$$\frac{I_{RN}}{I_{RF}} = \frac{(Q \cdot F_{VCO})}{(3 \cdot CN \cdot F_{REF})}$$

where :

Q=fractional-N modulus

 F_{VCO} = input frequency of the prescaler

 F_{REF} = input frequency of the reference divider.

Lock Detect

The output LOCK is H when the phase detector indicates a lock condition. The lock condition is defined as a phase difference of less than +1 cycle on the reference input REFin. The lock condition is also fulfilled when the synthesizer is disabled.

Test Modes

The lock ouput is selectable as $\mathsf{F}_{\mathsf{REF}},\,\mathsf{F}_{\mathsf{MAIN}}$ and lock. Bits T1 and T0 of the E word control the selection.

T1=0 and T0=0 or the E register is not programmed : lock output is configured as lock indicator.

T1=0 and T0=1, the lock output gives the output of the reference divider

T1=1 and T0=1, the lock output gives the output of the main divider.

The E register is reset to 0 anytime the D word is programmed.

The test input pin (Pin 19) is a buffured logic input which is exclusively ORed with the output of the prescaler. The output of the XOR gate is the input to the MAIN divider. The Test pin must be connected to V_{DD} during normal operation as a synthesizer. This pin can be used as an input for verifying the divide ratio of the main divider; while in this condition the input to the prescaler, RFin, may be connected to V_{CCP} through a 10k Ω resistor in order to place the prescaler output into a known state.