
DISCRETE SEMICONDUCTORS

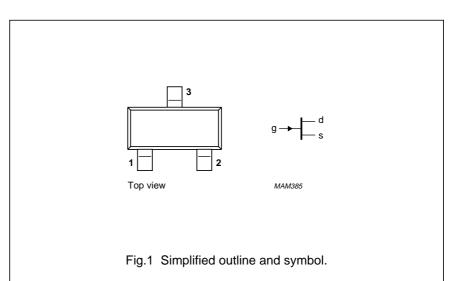
Product specification File under Discrete Semiconductors, SC07 April 1995

PMBFJ111; PMBFJ112; PMBFJ113

FEATURES

- High-speed switching
- Interchangeability of drain and source connections
- Low R_{DSon} at zero gate voltage (< 30 Ω for PMBFJ111).

DESCRIPTION


Symmetrical N-channel junction FETs in a surface mount SOT23 envelope. Intended for use in applications such as analog switches, choppers, commutators, multiplexers and thin and thick film hybrids.

PINNING - SOT23

PIN	DESCRIPTION	
1	drain	
2	source	
3	gate	

Note

1. Drain and source are interchangeable.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DS}	drain-source voltage		_	±40	V
V _{GSO}	gate-source voltage		_	-40	V
V _{GDO}	drain-drain voltage		_	-40	V
I _G	forward gate current (DC)		-	50	mA
P _{tot}	total power dissipation	T _{amb} = 25 °C; note 1	_	300	mW
T _{stg}	storage temperature		-65	150	°C
Тј	operating junction temperature		_	150	°C

PMBFJ111; PMBFJ112; PMBFJ113

THERMAL CHARACTERISTICS

 $T_j = P(R_{th j-t} + R_{th t-s} + R_{th s-a}) + T_{amb}$

SYMBOL	PARAMETER	MAX.	UNIT
R _{th j-a}	from junction to ambient (note 1)	430	K/W
R _{th j-a}	from junction to ambient (note 2)	500	K/W

Notes

- 1. Mounted on a ceramic substrate, 8 mm \times 10 mm \times 0.7 mm.
- 2. Mounted on printed circuit board.

STATIC CHARACTERISTICS

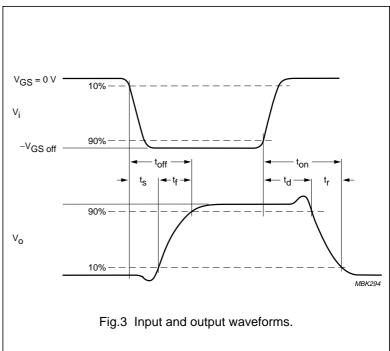
 $T_j = 25 \ ^{\circ}C.$

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
-I _{GSS}	reverse gate current	$-V_{GS} = 15 \text{ V}; V_{DS} = 0$	_	1	nA
I _{DSS}	drain current	V _{GS} = 0; V _{DS} = 15 V			
	PMBFJ111		20	-	mA
	PMBFJ112		5	-	
	PMBFJ113		2	-	
-V _{(BR)GSS}	gate-source breakdown voltage	$-I_{G} = 1 \ \mu A; \ V_{DS} = 0$	40	_	V
-V _{GS(off)}	gate-source cut-off voltage	$I_{D} = 1 \ \mu A; \ V_{DS} = 5 \ V$			
	PMBFJ111		3	10	V
	PMBFJ112		1	5	
	PMBFJ113		0.5	3	
R _{DS(on)}	drain-source on-resistance	$V_{GS} = 0 V; V_{DS} = 0.1 V$			
	PMBFJ111		_	30	Ω
	PMBFJ112		_	50	
	PMBFJ113		_	100	

PMBFJ111; PMBFJ112; PMBFJ113

DYNAMIC CHARACTERISTICS

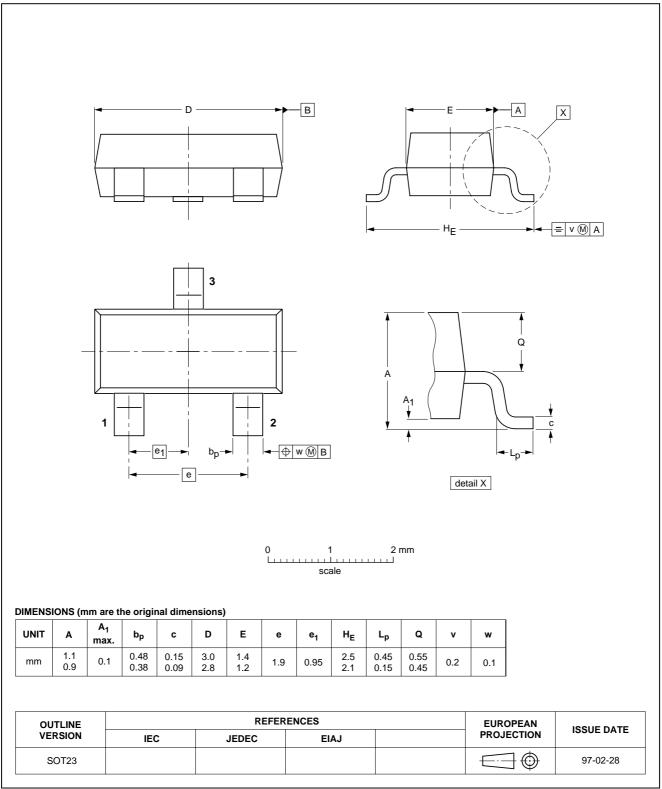
T_i = 25 °C.


SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
C _{iss}	input capacitance	$V_{DS} = 0$ -V _{GS} = 10 V f = 1 MHz	6	-	pF
		$V_{DS} = 0$ -V _{GS} = 0 f = 1 MHz T _{amb} = 25 °C	22	28	pF
C _{rss}	feedback capacitance	$V_{DS} = 0$ $-V_{GS} = 10 V$ f = 1 MHz	3	-	pF
Switching time	es (see Fig.2)		ſ	•	
t _r	rise time	note 1	6	-	ns
t _{on}	turn-on time	note 1	13	-	ns
t _f	fall time	note 1	15	_	ns
t _{off}	turn-off time	note 1	35	-	ns

Notes

- 1. Test conditions for switching times are as follows:
 - V_{DD} = 10 V, V_{GS} = 0 to $-V_{GS(off)}$ (all types);
 - $-V_{GS(off)} = 12 \text{ V}, \text{ R}_{L} = 750 \Omega \text{ (PMBFJ111)};$

 - $$\label{eq:GS} \begin{split} V_{GS(off)} &= 7 \ \text{V}, \ \text{R}_{\text{L}} = 1550 \ \Omega \ (\text{PMBFJ112}); \\ V_{GS(off)} &= 5 \ \text{V}, \ \text{R}_{\text{L}} = 3150 \ \Omega \ (\text{PMBFJ113}). \end{split}$$



PMBFJ111; PMBFJ112; PMBFJ113

N-channel junction FETs

PACKAGE OUTLINE

Plastic surface mounted package; 3 leads

SOT23

PMBFJ111; PMBFJ112; PMBFJ113

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Short-form specification	The data in this specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.