

r		

ICs for Communications

Prescaler Circuit 1.1 GHz

PMB 2313T Version 1.2

Data Sheet 08.95

PMB 2313T Revision History:	08.95
Previous Releases:	none
Page	Subjects (changes since last revision)

Edition 08.95

This edition was realized using the software system FrameMaker[®].

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation, Balanstraße 73, 81541 München

© Siemens AG 1995.

All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.

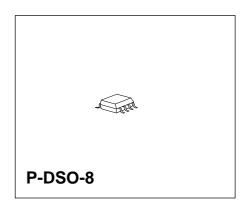
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components¹ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems² with the express written approval of the Semiconductor Group of Siemens AG.

- 1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
- 2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.

SIEMENS


Prescaler Circuit 1.1 GHz

PMB 2313T

Version 1.2 Bipolar IC

Features

- Low power consumption
- TTL/CMOS compatible MOD input
- · Low-power standby mode
- Switchable divider ratios 64/65 or 128/129
- Low supply voltage down to 2.7 V

Application

The IC is designed for use in mobile radio communication devices up to 1100 MHz.

Due to its low power consumption and low phase noise generation it is suitable for the use in battery powered handheld systems, e.g. GSM, cordless telephone and wireless LANs.

Internal current source at the emitter follower output. No external resistor needed in typical applications.

The divider ratio is 1:64/65 or 1:128/129 depending on the external circuit configuration. The IC is board level compatible to the PMB 2312 prescaler.

Туре	Ordering Code	Package		
PMB 2313T	Q67000-A6116	P-DSO-8 (SMD)		
PMB 2313T	Q67006-A6116	P-DSO-8 (SMD, Tape & Reel)		

Circuit Description

The differential inputs of the IC may be connected either balanced or single ended. In the latter case the unused input must be RF-grounded with a capacitor (about 1.5 nF depending on the application frequency) with low serial inductance.

Depending on the logic level at SW input the basic divider ratio of the ECL-stages is fixed to 1:64/65 or 1:128/129. The MOD input determines whether modulus 1:n or 1:n + 1 (n = 64 or 128 according to SW-level) is active.

The IC can be switched to a low-power standby mode (input STB).

The MOD input is TTL/CMOS compatible.

The emitter follower output is CMOS compatible according to the application circuit on **page 9**. The minimum logic swing is 0.8 Vpp.

Function Table

Input Pin	Logic Level	Prescaler Function
SW	HIGH = V_S – 0.1 V to V_S LOW = GND to 0.8 V or open	1:64/65 1:128/129
MOD	HIGH = 2.0 V to $V_{\rm S}$ or open LOW = GND to 0.8 V	1:64/1:128 1:65/1:129
STB	HIGH = V_S – 0.1 V to V_S LOW = GND to 0.8 V	Divider Q = HIGH, STANDBY-mode

Pin Configuration

(top view)

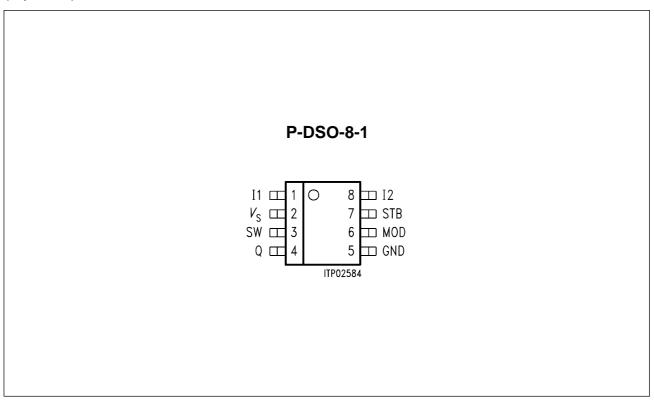


Figure 1

Pin Definitions and Functions

Pin No.	Symbol	Function
1	I1	RF-input I1
2	V_{S}	Supply voltage $V_{\mathbb{S}}$
3	SW	Divider ratio 1:64/65 - 1:128/129 control input (SW)
4	Q	Output Q
5	l2	GND
6	STB	Modulus 1: $n/n + 1$ (n = 64 or 128) control input (MOD)
7	MOD	Standby mode control input (STB)
8	GND	RF-input I2

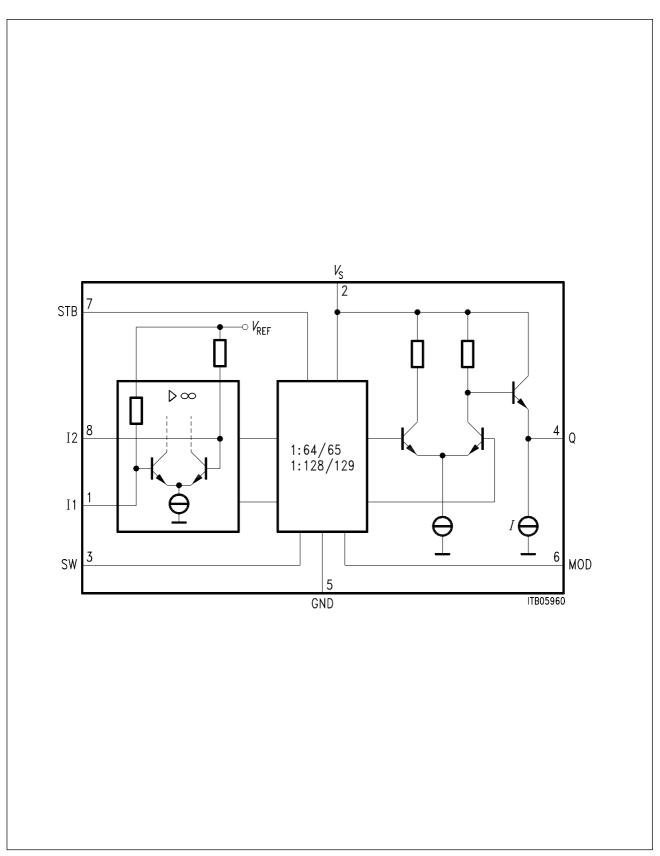


Figure 2 Block Diagram

Absolute Maximum Ratings

 $T_{\rm A}$ = -40 to 85 $^{\circ}$ C

Parameter	Symbol	Lim	it Values	Unit	Remarks
		min.	max.		
Supply voltage	$V_{\mathtt{S}}$	- 0.3	6	V	
Input level (Pin 1; Pin 8)	V_{I}		2	V	$V_{\rm S}$ = 0 V
Voltage swing (Pin 1 to 8)	V_{I18}	-2	2	V	
Input level (Pin 3; Pin 6; Pin 7)	$V_{ m SW}, \ V_{ m MOD}, \ V_{ m STB}$	- 0.3	$V_{\rm S}$ + 0.7 V or 5.5 V if $V_{\rm S}$ + 0.7 V > 5.5 V	V	V _S = 2.7 5.5 V
Output level (Pin 4)	V_{Q}		$V_{\mathbb{S}}$	V	
Output current (Pin 4)	$-I_{Q}$		5	mA	
Junction temperature	T_{j}		125	°C	
Storage temperature	$T_{\mathtt{S}}$	- 65	125	°C	
Thermal resistance system-ambient	R_{thsa}		185	K/W	

The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result.

ESD-integrity (according MIL-STD 883D, Meth. 3015.7): 500 V

Operating Range

Parameter	Symbol	Limi	it Values	Unit	Remarks
		min.	max.		
Supply voltage	$V_{\mathtt{S}}$	2.7	5.5	V	
Input frequency	f	50	1400	MHz	
Ambient temperature	T_{A}	- 40	85	°C	

Within the operational range the IC operates as described in the circuit description. The AC / DC characteristic limits are not guaranteed.

AC/DC Characteristics

 $T_{\rm A}$ = - 20 to 85 $^{\circ}{\rm C}$

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Supply voltage $V_{\rm S}$ = 2.7 to 5.5 V Ambient temperature $T_{\rm A}$ = -20 to 85 °C (referred to the test circuit)

		1				
Supply current	$I_{\mathtt{S}}$		1.9	2.4	mA	Inputs RF-grounded,
						$V_{\rm S}$ = 2.7, $T_{\rm A}$ = 25 °C,
						$STB = V_S$ output open
	I_{S}		1.95	2.45	mA	inputs RF-grounded,
						$V_{\rm S}$ = 4.0, $T_{\rm A}$ = 25 °C,
						$STB = V_S$ output open
	I_{S}		2.00	2.5	mA	inputs RF-grounded,
						$V_{\rm S} = 5.5, T_{\rm A} = 25 ^{\circ}{\rm C},$
						$STB = V_S$ output open
Supply current	I_{STB}			0.1	mA	inputs RF-grounded,
in standby-mode						output open, STB = GND
Input level	V_{IN}	25		400	mVrms	100-1000 MHz (sine wave)
dynamic range	P_{IN}	– 19		5	dBm	100-1000 MHz (sine wave)
(see figure 6)	V_{IN}	25		280	mVrms	1000-1100 MHz (sine wave)
	P_{IN}	– 19		2	dBm	1000-1100 MHz (sine wave)
Output logic swing	V_{Q}	1	1.1		Vpp	$C_{\rm L} \le$ 12 pF, $R_{\rm L}$ = 2 k Ω
	V_{Q}	0.8	1.1		Vpp	$C_{L} \le 8 \text{ pF}$
SW voltage High	V_{SWH}	$V_{\rm S}$ – 0.1 V		$V_{ t S}$	V	
SW voltage Low	V_{SWL}	GND		0.8	V	
SW input current	I_{SWH}			60	μΑ	$SW = V_S$
High						
SW input current	$-I_{SWL}$			30	μΑ	SW = GND
Low						
MOD voltage High	V_{MODH}	2.3		$V_{\mathtt{S}}$	V	
MOD voltage Low	V_{MODL}	GND		8.0	V	
MOD input current				50	μΑ	$MOD = V_S$
High	I_{MODH}					
MOD input current				120	μΑ	MOD = GND
Low	I_{MODL}					

AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production.

AC/DC Characteristics (cont'd)

 $T_{\rm A}$ = - 20 to 85 $^{\circ}{\rm C}$

Parameter	Symbol	Limit Values			Unit	Test Condition	
		min.	typ.	max.			
STB voltage High	V_{STBH}	$V_{\rm S}$ $-$ 0.1		V_{S}	V		
STB voltage Low	V_{STBL}	GND		0.8	V		
STB input current High	I_{STBH}			30	μΑ	$STB = V_S$	
STB input current Low	$-I_{STBL}$			60	μΑ	STB = GND	
Internal current source (see block diagram)	I		400		μΑ		

Delay Times

MOD setup time	t_{set}		29	ns	
(figure 5)					

AC/DC characteristics involve the spread of values guaranteed within the specified supply voltage and ambient temperature range. Typical characteristics are the median of the production.

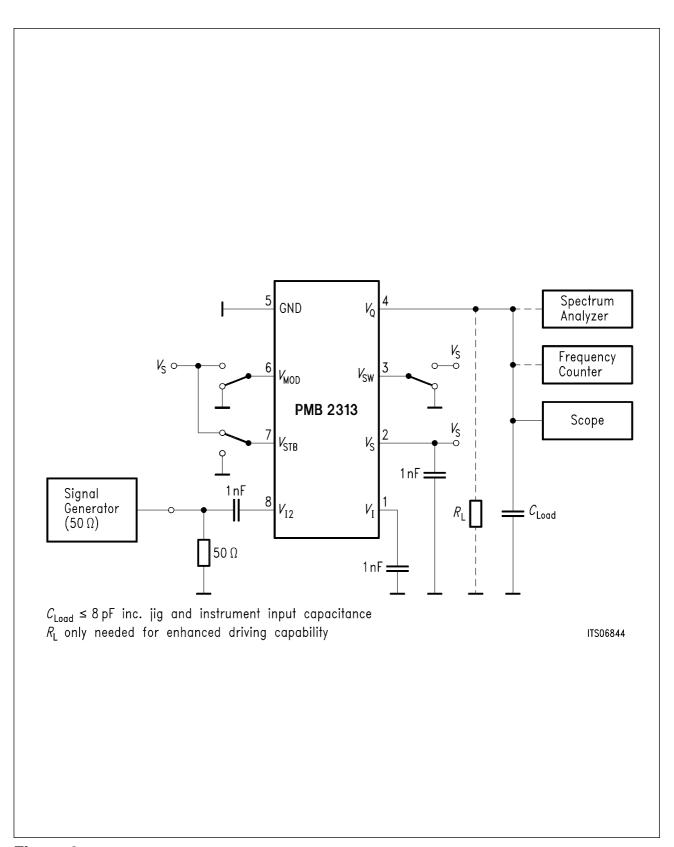


Figure 3
Test Circuit
Input Sensitivity and Output Logic Swing Measurement

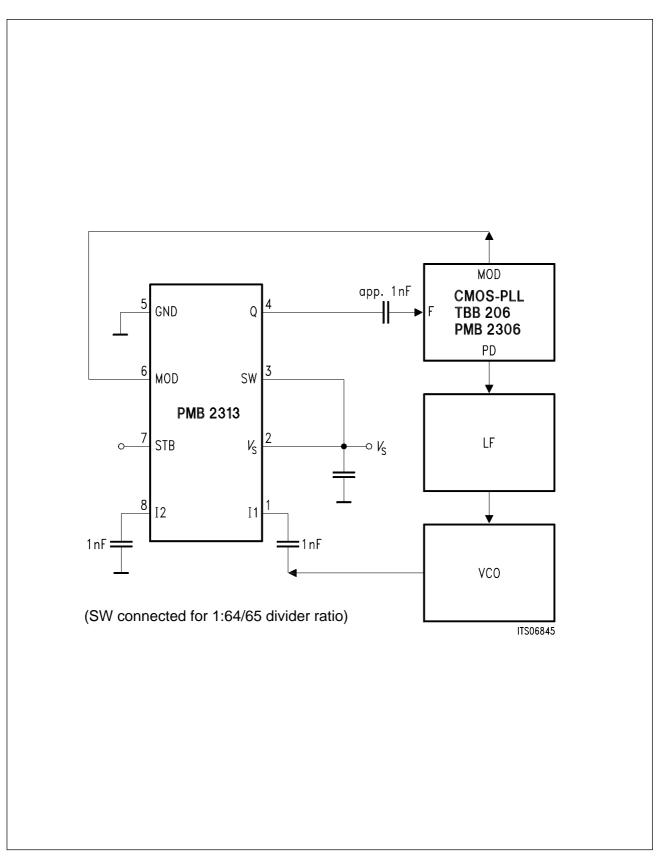


Figure 4
Application Circuit

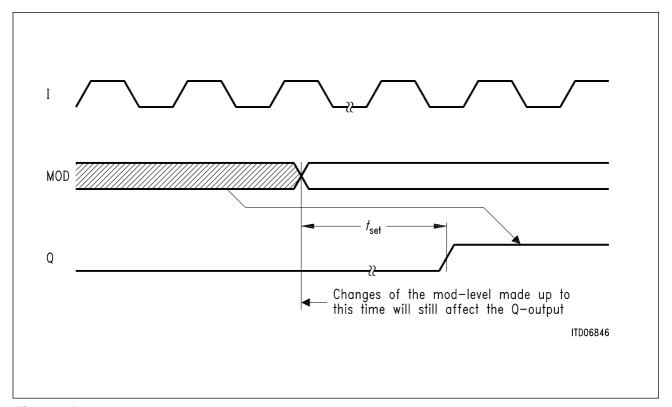


Figure 5
Definition of Modulus Setup Time

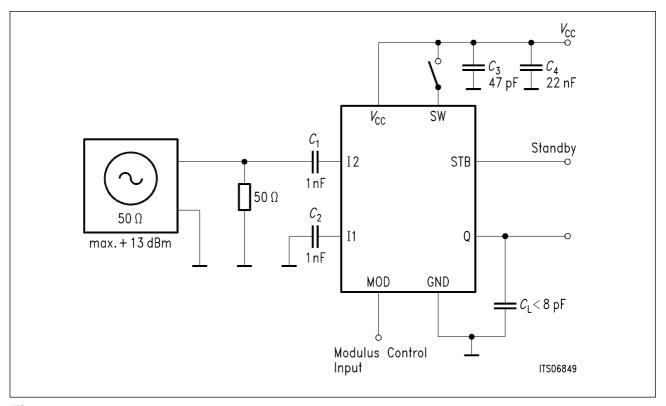


Figure 6
Input Dynamic Range Test Configuration 1

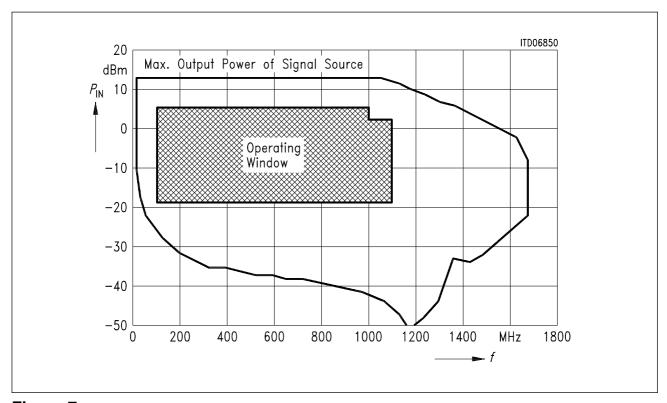


Figure 7 PMB 2313 Dynamic Range $V_{\rm CC}$ = 4 V Divider Ratio 65, Test Configuration 1

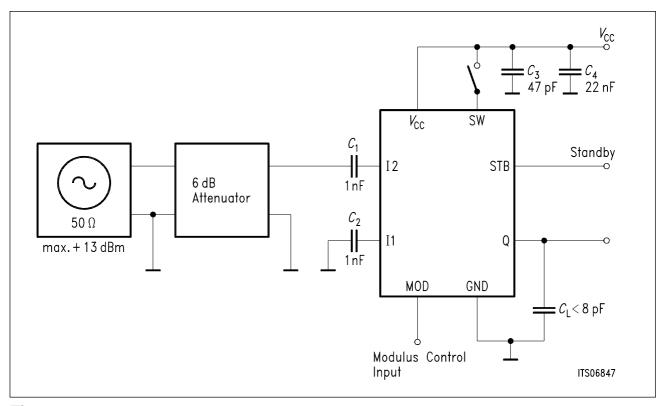


Figure 8
Input Dynamic Range Test Configuration 2

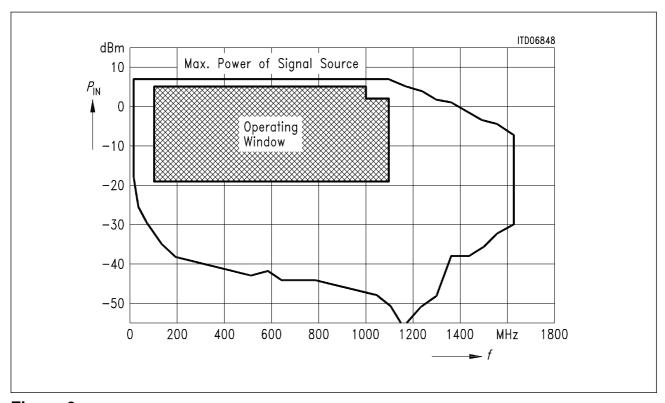


Figure 9 PMB 2313 Dynamic Range $V_{\rm CC}$ = 4 V Divider Ratio 65, Test Configuration 2

Phase Noise Measurement

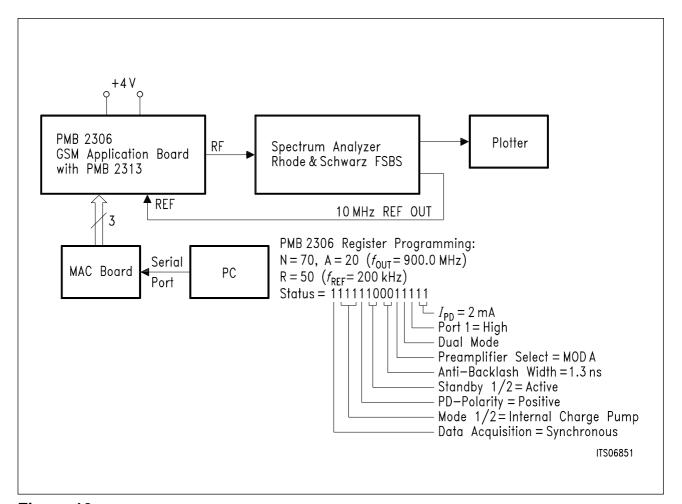


Figure 10 Test Setup

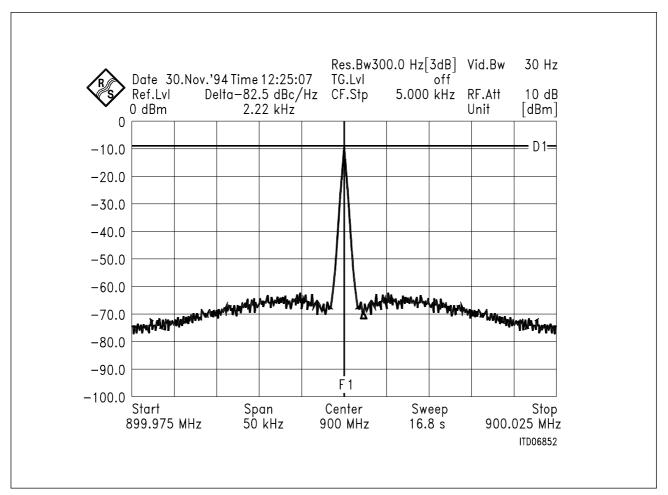


Figure 11 Measured Spectrum

SIEMENS

PMB 2306 GSM Application Board

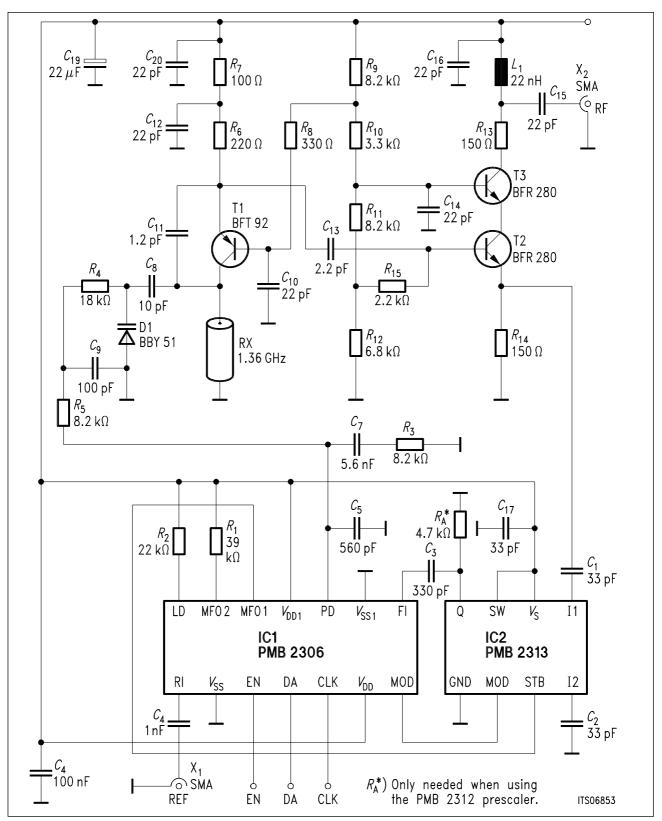


Figure 12 Circuit Diagram

PMB 2306 GSM Application Board

List of Components

Item	Quantity	Reference		Part	
1	1	R7	100 Ω	SMD/0805	B54102-A1101-X60
2 3	2	R13, R14	150 Ω	SMD/0805	B54102-A1151-J60
	1	R6	220 Ω	SMD/0805	B54102-A1221-J60
4	1	R8	330Ω	SMD/0805	B54102-A1331-J60
5 6	1	R15	$2.2 \text{ k}\Omega$	SMD/0805	B54102-A1222-J60
6	1	R10	$3.3~\mathrm{k}\Omega$	SMD/0805	B54102-A1332-J60
7	1	RA	$4.7 \text{ k}\Omega$	SMD/0805	B54102-A1472-J60
8	1	R12	$6.8 \text{ k}\Omega$	SMD/0805	B54102-A1682-J60
9	4	R3, R5, R9, R11	$8.2 \text{ k}\Omega$	SMD/0805	B54102-A1822-J60
10	1	R4	18 kΩ	SMD/0805	B54102-A1183-J60
11	1	R2	22 kΩ	SMD/0805	B54102-A1223-J60
12	1	R1	39 kΩ	SMD/0805	B54102-A1393-J60
13	1	L1	22 nH	SIMID 01	B82412-A3220-M
14	1	C11	1.2 pF	COG/0805	B37940-K5010-C262
15	1	C13	2.2 pF	COG/0805	B37940-K5020-C262
16	1	C8	10 pF	COG/0805	B37940-K5100-J62
17	6	C10, C12, C14	00 F	000/0005	D070404/5000400
4.0		C15, C16, C30	22 pF	COG/0805	B37940-K5220-J62
18	3	C1, C2, C17	33 pF	COG/0805	B37940-K5330-J62
19	1	C9	100 pF	COG/0805	B37940-K5101-J62
20	1	C3	330 pF	COG/0805	B37940-K5331-J62
21	1	C5	560 pF	COG/0805	B37940-K5561-J62
22	1	C4	1.0 nF	000/4040	
23	1	C7	5.6 nF	COG/1210	D27050 V5404 V62
24	1	C6	100 nF	X7R/1210	B37950-K5104-K62
25	1	C19	22 μF		
26	1	D1	BBY51		Q62702-B631
27	2	T2, T3	BFR280		Q62702-F1298
28	1	T1	BFT92		Q62702-F1062
29	2	X1, X2	SMA		Connector
30	1	RX	1.3 GHz		B69620-G1307-A410
31	1	IC1		Г P-DSO-14	Q67106-H6423 (T+R)
		or		P-DSO-14	Q67100-H6423 (Tube)
32	1	IC2		P-DSO-8-1	Q67006-A6116 (T+R)
		or	PMB 23131	Γ P-DSO-8-1	Q67000-A6116 (Tube)

Replacing the PMB 2312 by the PMB 2313

	PMB 2312	PMB 2313	Test Condition
Supply current (typ.):	5.7 mA	1.95 mA	Inputs RF-grounded, $V_{\rm S}$ = 4.0 V, $T_{\rm A}$ = 25 °C STB open, output open
Input frequency Supply voltage Output stage load:	200 - 1000 MHz 4.0 - 5.5 V internal load resistor	100 - 1100 MHz 2.7 - 5.5 V internal current source	
Phase noise:	same performance, see section "Phase Noise Measurement"		
Input impedance (typ.):	40 Ω 1.3 pF	750 Ω 560 fF	f = 900 MHz, C_1 = C_2 = 1 nF V_S = 4.0 V, T_A = 25 °C
	66 Ω 1.4 pF	1150 Ω 350 fF	f = 450 MHz, C_1 = C_2 = 1 nF V_S = 4.0 V, T_A = 25 °C
Input sensitivity:	see figure 13		

Due to the internal output current source of the PMB 2313, an external load resistor may be omitted in most cases.

Input Sensitivity of PMB 2313 versus PMB 2312.

Measurement according to Test Configuration 1

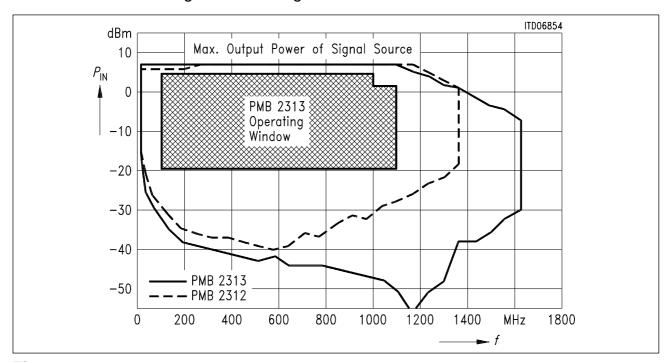
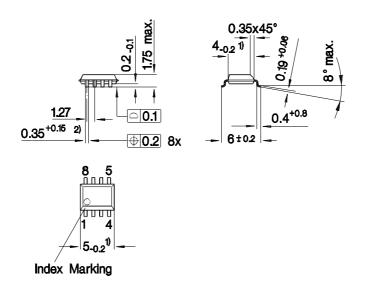



Figure 13 PMB 2313 vers. PMB 2312 Dynamic Range $V_{\rm CC}$ = 4 V Divider Ratio 65, Test Configuration 2

Package Outlines

P-DSO-8

(Plastic Dual Small Outline Package)

- 1) Does not include plastic or metal protrusion of 0.15 max. per side
- 2) Does not include dambar protrusion

0005101

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm