
Philips Semiconductors
Interconnectivity

__
Philips Semiconductors - Asia Product Innovation Centre

Visit http://www.flexiusb.com

8 June 1998

Application Notes

Using PDIUSBD12 in DMA Mode

Interconnectivity Page 2 of 5

Application Notes: Using PDIUSBD12 in DMA Mode

__
Philips Semiconductors - Asia Product Innovation Centre

Visit http://www.flexiusb.com

1. Introduction to Protocol Based DMA Operation

PDIUSBD12 has 6 endpoints, 2 control endpoints, 2 Generic endpoints and 2 Main endpoints.
The Main endpoints support DMA transfer.

In the protocol based DMA operation, the host application first ask the device’s firmware to setup
DMA transfer using vendor request which is sent through control endpoint, then it performs actual
bulk data transfer on the Main endpoints. After the setup of DMA controller, the host can transfer
up to 64K bytes of data to the device without any firmware intervention.

A complete DMA transfer requires following two steps:

1) Send a Setup DMA Request through control pipe, let the device to program the DMAC with
DMA transfer direction, start address and size of transfer;

2) Send or received data packets on Main endpoint.

2. Device’s DMA States

The Setup DMA Request is sent from the host as vendor request using control pipe. The device’s
response and action taken depend on its internal states of DMA operation.

Above DMA state diagram shows 3 DMA states in the device: IDLE, RUNNING and PENDING.
When there is no running or pending DMA operation, the device is in IDLE and the Setup DMA
Request will be responded with ACK. If the device is in the process of a DMA transfer, it is in
RUNNING. Setup DMA Request received at RUNNING will be responded with NAK and causes
the device to enter PENDING, which indicates there is a pending Setup DMA Request. If the
device receives another Setup DMA Request in PENDING, the new request will overwrite the old
one.

IDLE

PENDING

RUNNING

IOCTL: Setup DMA / ACK EOT

IOCTL: Setup DMA / NAK

EOT / ACK

IOCTL: Setup DMA / NAK
Overwrite previous setup DMA request

Interconnectivity Page 3 of 5

Application Notes: Using PDIUSBD12 in DMA Mode

__
Philips Semiconductors - Asia Product Innovation Centre

Visit http://www.flexiusb.com

Below is the flow chart of the firmware, which handles Setup DMA Request and EOT.

3) DMA Configuration Register

The D12’s DMA operation is controlled by its DMA Configuration Register, which is set by
command Set DMA. Not all the bits inside the register are related to DMA operation. The bit 4,
Interrupt Pin Mode, controls D12 sources of interrupt together with bit 7 of Clock Division Factor,
SOF-ONLY.

Below is a summary of recommended register programming:

Bit Name DMA Mode Non-DMA Mode
0 & 1 DMA Burst ‘1’ & ‘1’ Don’t care

2 DMA Enable ‘1’ ‘0’
3 DMA Direction ‘1’ for IN token;

‘0’ for OUT token
Don’t care

4 Auto Reload ‘0’ Don’t care
5 Interrupt Pin Mode ‘0’ ‘0’
6 Endpoint 4 Interrupt Enable ‘0’ ‘1’
7 Endpoint 5 Interrupt Enable ‘0’ ‘1’

By default, both of D12 and DMAC are not in auto-reload mode. We do not want the device’s
DMA “auto-restart” because this is a protocol based operation, that is under host’s control. At
EOT, both of D12 and DMA controller’s DMA will be disabled. The firmware needs to re-enable
them to restart DMA transfer upon receiving Setup DMA Request from the host.

Please also note that interrupt from endpoints 4 and 5 are disabled in DMA mode. Servicing
interrupt on these endpoints is unnecessary and has a potential flaw during DMA transfer. DMA
can be treated as highest “interrupt” that happens between any CPU instructions, even inside

Write Register

Setup DMA
Request?

State = IDLE?

Save Setup DMA Request

Program DMAC
Program D12's DMA Configuration Register

State <- RUNNING
ACK Device Request

State <- PENDING

End of Write Register

Stall Control Endpoint

Yes

No

Yes

No

EOT

State = PENDING?

Program DMAC
Program D12's DMA Configuration Register

State <- RUNNING
ACK Device Request

State <- IDLE

End of EOT

Yes

No

Interconnectivity Page 4 of 5

Application Notes: Using PDIUSBD12 in DMA Mode

__
Philips Semiconductors - Asia Product Innovation Centre

Visit http://www.flexiusb.com

ISR. Any routines, that may want to be used to check DMA status, are not reliable because the
DMA status during transfer may change at any time.

Below is an example of programming IN token DMA transfer, the dma_dir and dma_transfer_size
have been set through Setup DMA Request:

dma_start(dma_dir, MainDmaBuf, dma_transfer_size, 3);

dma.bits.dma_burst = 3;

dma.bits.dma_enable = 1;

dma.bits.dma_direction = dma_dir;

dma.bits.auto_reload = 0;

dma.bits.normal_plus_sof = 0;

dma.bits.endp_4_interrupt_enable = 0;

dma.bits.endp_5_interrupt_enable = 0;

D12_SetDMA(dma);

4) Setup DMA Request

Setup DMA request is a vendor request that is sent through control pipe. In PDIUSBD12 sample
firmware and test applet, this is done by IOCTL_WRITE_REGISTER, which is defined by
Microsoft Still Image USB Interface in Windows 98 DDK. Below is the device request description:

Offset Field Size Value Comments
0 bmRequestType 1 0x40 Vendor request, device to host
1 bRequest 1 0x0C Fixed value for IOCTL_WRITE_REGISTER
2 wValue 2 0 Offset, set to zero
4 wIndex 2 0x0471 Fixed value of Setup DMA Request
6 wLength 2 6 Data length of Setup DMA Request

The details of requested DMA operation are sent in the data phase after the device request. The
sample firmware and test applet use a proprietary definition which is shown below:

Offset Field Comments
0 Address [7:0] The start address of requested DMA transfer.
1 Address [15:8]
2 Address [23:16]
3 Size [7:0] The size of transfer.
4 Size [15:8]
5 Command Bit 7: ‘1’ start DMA transfer

Bit 0: ‘1’ IN token; ‘0’ OUT token

5) Host Side Programming Considerations

The USB device is not the only criteria, which decides the transfer rate. The performance of host
side application plays a more important role in overall system performance because host always
controls USB transactions.

The DMA transfer is a sequential operation that involves both control endpoint and Main
endpoint. Co-operation is important because next step of operation is determined by the result of

Interconnectivity Page 5 of 5

Application Notes: Using PDIUSBD12 in DMA Mode

__
Philips Semiconductors - Asia Product Innovation Centre

Visit http://www.flexiusb.com

last operation. While multithreads can be used to access different pipes to increase system
performance, it makes programming much easier to process Setup DMA Request (IOCTL) and
data transfer (WriteFile/ReadFile) operation on Main endpoints with a single thread.

IOCTL_WRITE_REGISTER and IOCTL_READ_REGISTER use structure IO_BLOCK to
exchange data with the device driver. Below structure definition is part of Microsoft Still Image
USB Interface.

typedef struct _IO_BLOCK {

 IN unsigned uOffset;

 IN unsigned uLength;

 IN OUT PUCHAR pbyData;

 IN unsigned uIndex;

} IO_BLOCK, *PIO_BLOCK;

IO_REQUEST structure is a proprietary definition that contains details of the Setup DMA
Request.

typedef struct _IO_REQUEST {

 unsigned short uAddressL;

 unsigned char bAddressH;

 unsigned short uSize;

 unsigned char bCommand;

} IO_REQUEST, *PIO_REQUEST;

See the sample code below:
ioRequest.uAddressL = 0;

ioRequest.bAddressH = 0;

ioRequest.uSize = transfer_size;

ioRequest.bCommand = 0x80; //start, write

ioBlock.uOffset = 0;

ioBlock.uLength = sizeof(IO_REQUEST);

ioBlock.pbyData = (PUCHAR)&ioRequest;

ioBlock.uIndex = 0x471;

bResult = DeviceIoControl(hDevice,

IOCTL_WRITE_REGISTERS,

(PVOID)&ioBlock,

sizeof(IO_BLOCK),

NULL,

0,

&nBytes,

NULL);

if (bResult != TRUE) {

testDlg->MessageBox("Setup DMA request failed!", "Test Error");

return;

}

bResult = WriteFile(hFile,

pcIoBuffer,

transfer_size,

&nBytes,

NULL);

