INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC12 2000 Nov 22

HILIP

Product specification

$\mathbf{65}\times\mathbf{102}$ pixels matrix LCD driver

CONTENTS

1	FEATURES
2	APPLICATIONS
3	GENERAL DESCRIPTION
4	ORDERING INFORMATION
5	BLOCK DIAGRAM
6	PINNING
7	PIN FUNCTIONS
7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 7.1.13	Pin functions ROW 0 to ROW 64 row driver outputs COL 0 to COL 101 column driver outputs V_{SS1} and V_{SS2} : negative power supply rails V_{DD1} to V_{DD3} : positive power supply rails V_{LCDIN} : LCD power supply V_{LCDOUT} : LCD power supply $V_{LCDSENSE}$: voltage multiplier regulation input (V_{LCD}) T1 to T5: test pads SDIN: serial data line SCLK: serial clock line D/\overline{C} : mode select SCE: chip enable OSC: oscillator
7.1.14	RES: reset
8	FUNCTIONAL DESCRIPTION
8.1 8.2 8.3 8.4 8.5 8.6	Oscillator Address Counter (AC) Display Data RAM (DDRAM) Timing generator Display address counter LCD row and column drivers
9	ADDRESSING
9.1	Data structure

10	INSTRUCTIONS
10.1	Initialization
10.2	Reset function
10.3	Function set
10.3.1	PD
10.3.2	V
10.3.3 10.4	H Display control
10.4	Display control D and E
10.5	Set Y address of RAM
10.6	Set X address of RAM
10.7	Set HV-generator stages
10.8	Bias system
10.9	Temperature control
10.10	Set V _{OP} value
11	LIMITING VALUES
12	HANDLING
13	DC CHARACTERISTICS
14	AC CHARACTERISTICS
15	SERIAL INTERFACE
16	RESET
17	APPLICATION INFORMATION
18	CHIP INFORMATION
19	PAD INFORMATION
20	BONDING PAD LOCATION
21	DEVICE PROTECTION DIAGRAM
22	TRAY INFORMATION
23	DATA SHEET STATUS
24	DEFINITIONS

25 DISCLAIMERS

PCF8812

1 FEATURES

- 65 row and 102 column outputs
- Display data RAM 65×102 bits
- On-chip:
 - Configurable 5 (4, 3 and 2) voltage multiplier generating V_{LCD} (external V_{LCD} also possible)
 - Generation of intermediate LCD bias voltages
 - Oscillator requires no external components (external clock also possible).
- External reset input pin
- Serial interface maximum 4.0 Mbit/s
- CMOS compatible inputs
- Mux rate: 1 : 65
- Logic supply voltage range V_{DD1} to V_{SS} :
 - 2.5 to 5.5 V.
- High voltage generator supply voltage range V_{DD2} to V_{SS} and V_{DD3} to V_{SS}
 - 2.5 to 4.5 V.
- Display supply voltage range V_{LCD} to V_{SS}:
 - 4.5 to 9.0 V.
- Low power consumption, suitable for battery operated systems
- Temperature compensation of $\mathsf{V}_{\mathsf{LCD}}$
- Temperature range: $T_{amb} = -40$ to +85 °C
- Slim chip layout, suited for Chip-On-Glass (COG) applications.

4 ORDERING INFORMATION

TYPE NUMBER		PACKAGE	
	NAME	DESCRIPTION	VERSION
PCF8812U/2	Tray	chip with bumps in tray	_

2 APPLICATIONS

• Telecom equipment.

3 GENERAL DESCRIPTION

The PCF8812 is a low power CMOS LCD controller driver, designed to drive a graphic display of 65 rows and 102 columns. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD supply and bias voltages, resulting in a minimum of external components and low power consumption. The PCF8812 interfaces to microcontrollers via a serial bus interface.

PCF8812

5 BLOCK DIAGRAM

6 PINNING

SYMBOL	PAD	DESCRIPTION	
RES	1	external reset input (active LOW)	
ROW 32 to ROW 19	2 to 15	LCD row driver outputs	
ROW 0 to ROW 18	18 to 36	LCD row driver outputs	
COL 0 to COL 101	37 to 138	LCD column driver outputs	
ROW 50 to ROW 33	139 to 156	LCD row driver outputs	
ROW 51 to ROW 64	159 to 172	LCD row driver outputs	
V _{DD1}	174 to 179	supply voltage 1	
V _{DD3}	180	supply voltage 3	
V _{DD2}	181 to 193	supply voltage 2	
OSC	194	oscillator input	
SDIN	195	serial data input	
D/C	196	data/command input	
SCE 197		chip enable input (active LOW)	
T2	198	test 2 output	
SCLK	199	serial clock input	
V _{SS2}	200 to 213	negative power supply 2	
V _{SS1}	214 to 217	negative power supply 1	
T1	218	test 1 input	
Т5	219	test 5 input	
T4	220	test 4 input	
V _{SS1}	221 and 222	negative power supply 1	
ТЗ	223	test 3 input/output	
V _{LCDIN}	224 to 229	LCD supply voltage	
V _{LCDOUT}	230 to 236	voltage multiplier output	
VLCDSENSE	237	voltage multiplier regulation input (V _{LCD})	
	16, 17, 157, 158 and 173	dummy pads	

PCF8812

7 PIN FUNCTIONS

7.1 Pin functions

7.1.1 ROW 0 TO ROW 64 ROW DRIVER OUTPUTS

These pads output the row signals.

7.1.2 COL 0 TO COL 101 COLUMN DRIVER OUTPUTS

These pads output the column signals.

7.1.3 V_{SS1} and V_{SS2} : Negative power supply rails

The 2 supply rails V_{SS1} and V_{SS2} must be connected together.

7.1.4 V_{DD1} to V_{DD3} : Positive power supply rails

 V_{DD2} and V_{DD3} are the supply voltage for the internal voltage generator. Both have the same voltage and may be connected together outside of the chip. V_{DD1} is used as supply for the rest of the chip. V_{DD1} can be connected together with V_{DD2} and V_{DD3} but in this case care must be taken to respect the supply voltage range (see Chapter 13).

If the internal voltage generator is not used then V_{DD2} and V_{DD3} must be connected to V_{DD1} or connected to power.

7.1.5 V_{LCDIN}: LCD POWER SUPPLY

Positive power supply for the liquid crystal display. An external LCD supply voltage can be supplied using the V_{LCDIN} pad. In this case V_{LCDOUT} has to be left open-circuit and the internal voltage generator has to be programmed to zero. If the PCF8812 is in Power-down mode, the external LCD supply voltage has to be switched off.

7.1.6 V_{LCDOUT}: LCD POWER SUPPLY

Positive power supply for the liquid crystal display. If the internal voltage generator is used, the two supply rails V_{LCDIN} and V_{LCDOUT} must be connected together. If an external supply is used this pin must be left open-circuit.

7.1.7 $V_{LCDSENSE}$: VOLTAGE MULTIPLIER REGULATION INPUT (V_{LCD})

 V_{LCDSENSE} is the input of the internal voltage multiplier regulation.

If the internal voltage generator is used then V_{LCDSENSE} must be connected to V_{LCDOUT}. If a external supply voltage is used then the V_{LCDSENSE} can be let open-circuit or connected to ground.

7.1.8 T1 TO T5: TEST PADS

T1, T3, T4 and T5 must be connected to V_{SS} , T2 must be left open-circuit. Not accessible to user.

7.1.9 SDIN: SERIAL DATA LINE

Serial data input line.

7.1.10 SCLK: SERIAL CLOCK LINE

Input for the clock signal 0 to 4.0 Mbits/s.

7.1.11 D/\overline{C} : MODE SELECT

Input to select either command/address or data input.

7.1.12 SCE: CHIP ENABLE

The enable pin allows data to be clocked in; the signal is active LOW.

7.1.13 OSC: OSCILLATOR

When the on-chip oscillator is used this input must be connected to V_{DD} . An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to V_{SS} the display is not clocked and may be left in a DC state. To avoid this the chip should always be put into Power-down mode before stopping the clock.

7.1.14 RES: RESET

This signal will reset the device and must be applied to properly initialize the chip; the signal is active LOW.

8 FUNCTIONAL DESCRIPTION

8.1 Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to V_{DD} . An external clock signal, if used, is connected to this input.

8.2 Address Counter (AC)

The address counter assigns addresses to the display data RAM for writing. The X address X6 to X0 and the Y address Y3 to Y0 are set separately. After a write operation the address counter is automatically incremented by 1 according to the V flag (see Chapter 9).

8.3 Display Data RAM (DDRAM)

The PCF8812 contains a 65 \times 102 bit static RAM which stores the display data. The RAM is divided into 8 banks of 102 bytes (8 \times 8 \times 102 bits) and one bank of 102 bits (1 \times 102 bits). During RAM access, data is transferred to the RAM via the serial interface. There is a direct correspondence between the X address and the column output number.

8.4 Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not affected by operations on the data buses.

8.5 Display address counter

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs.

The display status (all dots on/off and normal/inverse video) is set by bits E and D in the command 'display control' (see Table 2).

8.6 LCD row and column drivers

The PCF8812 contains 65 row and 102 column drivers, which connect the appropriate LCD bias voltages in sequence to the display in accordance with the data to be displayed. Figure 2 shows typical waveforms. Unused outputs should be left unconnected.

PCF8812

65×102 pixels matrix LCD driver

PCF8812

9 ADDRESSING

Data is downloaded in bytes into the RAM matrix of the PCF8812 as indicated in Figs.3, 4, 5 and 6. The display RAM has a matrix of 65×102 bits. The columns are addressed by the address pointer. The address ranges are: X0 to X101 (1100101) and Y0 to Y8 (1000). Addresses outside of these ranges are not allowed. In vertical addressing mode (V = 1) the Y address increments after each byte (see Fig.6). After the last Y address (Y = 8) Y wraps around to 0 and X increments to address the next column. In horizontal addressing mode (V = 0) the X address increments after each byte (see Fig.5). After the last X address (X = 101) X wraps around to 0 and Y increments to address the next row. After the very last address (X = 101 and Y = 8) the address pointers wrap around to address (X = 0 and Y = 0).

9.1 Data structure

PCF8812

10 INSTRUCTIONS

The instruction format is divided into two modes: If D/\overline{C} (mode select) is set LOW the current byte is interpreted as command byte (see Table 1). Figure 8 shows an example of a serial data stream for initializing the chip. If D/\overline{C} is set HIGH the following bytes are stored in the display data RAM. After every data byte the address counter is incremented automatically. The level of the D/\overline{C} signal is read during the last bit of the data byte. Every instruction can be sent in any order to the PCF8812. The MSB of a byte is transmitted first. Figure 8 shows one possible command stream, used to set-up the LCD driver. The serial interface is initialized when SCE is HIGH. In this state SCLK clock pulses have no effect and no power is consumed by the serial interface. A negative edge on SCE enables the serial interface and indicates the start of a data transmission.

Figures 9 and 10 show the serial bus protocol:

• When SCE is HIGH, SCLK clocks are ignored. During the HIGH time of SCE the serial interface is initialized (see Fig.12)

- SDIN is sampled at the positive edge of SCLK
- D/ \overline{C} indicates whether the byte is a command (D/ \overline{C} = 0) or RAM data (D/ \overline{C} = 1). It is read with the eighth SCLK pulse
- If SCE stays LOW after the last bit of a command/data byte, the serial interface expects DB7 of the next byte at the next positive edge of SCLK (see Fig.12). If SCLK goes LOW after the last data bit (DB0), either:
 - A rising clock edge is required to latch the last data bit
 - Or the last bit is latched when SCE goes HIGH.
- A reset pulse with RES interrupts the transmission. No data is written into the RAM. The registers are cleared. If SCE is LOW after the positive edge of RES, the serial interface is ready to receive bit 7 of a command/data byte (see Fig.12).

SCE	
D/Ĉ	
RES	
SCLK	
	DB7\DB6\DB5\DB4\DB3\DB2\DB1\DB0\DB7\DB6\DB5\DB4\DB3\DB2\DB1\DB0\DB7\DB6\DB5\ MB7\DB6\DB3\DB2\DB1\DB0\DB7\DB6\DB5\
	Fig.11 Serial bus reset function (\overline{SCE}).

Table 1 Ins	struction set
-------------	---------------

INOTOLIOTION	D/0	COMMAND BYTE					DECODIDITION			
INSTRUCTION	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION
(H = 0 or 1)		1	1	1	1	1	1	1	1	
NOP	0	0	0	0	0	0	0	0	0	no operation
Function set	0	0	0	1	0	0	PD	V	Н	power-down control; entry mode; extended instruction set control (H)
Write data	1	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	writes data to display RAM
(H = 0)		•			•					
Reserved	0	0	0	0	0	0	1	Х	Х	do not use
Display control	0	0	0	0	0	1	D	0	E	sets display configuration
Set higher or lower programming range V _{op}	0	0	0	0	1	0	0	0	PRS	V _{LCD} programming range select
Set Y address of RAM	0	0	1	0	0	Y ₃	Y ₂	Y ₁	Y ₀	sets Y address of RAM; $0 \le Y \le 8$
Set X address of RAM	0	1	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁	X ₀	sets X address part of RAM; $0 \le X \le 101$
(H = 1)		•	•	•	•					
Reserved	0	0	0	0	0	0	0	0	1	do not use
Reserved	0	0	0	0	0	0	0	1	Х	do not use
Temperature control	0	0	0	0	0	0	1	TC ₁	TC ₀	set temperature coefficient (TCx)
HV-gen stages	0	0	0	0	0	1	0	S ₁	S ₀	# of HV-gen voltage multiplication
Bias system	0	0	0	0	1	0	BS ₂	BS ₁	BS ₀	set bias system (BSx)
Reserved	0	0	1	Х	Х	Х	Х	Х	Х	do not use (reserved for test)
Set V _{op}	0	1	V _{OP6}	V _{OP5}	V _{OP4}	V _{OP3}	V _{OP2}	V _{OP1}	V _{OP0}	write V _{OP} to register

В	IT	0	1	RESET STATE
PD	PD chip is active		chip is in Power-down mode	1
V		horizontal addressing	vertical addressing	0
Н		use basic instruction set	use extended instruction set	0
PRS		V _{LCD} programming range; LOW	V _{LCD} programming range; HIGH	0
D, E	00	display blank		D = 0
	10	normal mode		
	01	all display segments on		E = 0
	11	inverse video mode		
TC1 to TC0	00	V _{LCD} temperature coefficient 0		TC1 to TC0 = 00
	01	V _{LCD} temperature coefficient 1		
	10	V _{LCD} temperature coefficient 2		
	11	V _{LCD} temperature coefficient 3		
S1 to S0	00	2 × voltage multiplier		S1 to S0 = 00
	01	3 × voltage multiplier		
	10	4 × voltage multiplier		
	11	$5 \times voltage multiplier$		
V _{OP} 6 to V _{OP} 0		V _{LCD} programming		$V_{OP} 6 \text{ to } V_{OP}0 = 0000000$
BS2 to BS0		bias system		BS2 to BS0 = 000

Table 2 Explanations for symbols in Table 1

10.1 Initialization

Immediately following power-on, all internal registers as well as the RAM content are undefined; a reset pulse must be applied.

Reset is accomplished by applying an external reset pulse (active LOW) at the pad $\overline{\text{RES}}$. When reset occurs within the specified time, all internal registers are reset, however the RAM is still undefined. The state after reset is described in Section 10.2.

The $\overline{\text{RES}}$ input must be $\leq 0.3 V_{DD}$ when V_{DD} reaches $V_{DD(min)}$ (or higher) within a maximal time t_{VHRL} after V_{DD} going HIGH (see Fig.16).

10.2 Reset function

After reset the LCD driver has the following state:

• Power-down mode (PD = 1)

- Horizontal addressing (V = 0)
- Normal instruction set (H = 0)
- Display blank (E = D = 0)
- Address counter X6 to X0 = 0; Y3 to Y0 = 0
- Temperature control mode (TC1 to TC0 = 0)
- Bias system (BS2 to BS0 = 0)
- V_{LCD} is equal to 0; the HV-generator is switched off (V_{OP}6 to V_{OP}0 = 0 and PRS = 0)
- After power-on; RAM data is undefined; the reset signal doesn't change the content of the RAM
- All LCD outputs at V_{SS} (display off).

PCF8812

10.3 Function set

10.3.1 PD

- All LCD outputs at V_{SS} (display off)
- Bias generator and V_{LCD} generator off; V_{LCD} can be disconnected
- Oscillator off (external clock possible)
- Serial bus; command; etc. function

Table 3 X/Y address range: note 1

- RAM contents not cleared; RAM data can be written
- V_{LCD} discharged to V_{SS} in Power-down mode.

10.3.2 V

When V = 0, the horizontal addressing is selected. The data is written into the DDRAM as shown in Fig.5. When V = 1, the vertical addressing is selected. The data is written into the DDRAM as shown in Fig.6.

10.3.3 H

When H = 0 the commands 'display control', 'set Y address', 'set X address' and set the PRS bit (low or high range of the high voltage generator) can be performed, when H = 1 the others can be executed. The commands 'write data' and 'function set' can be executed in both cases.

10.4 Display control

10.4.1 D AND E

The bits D and E select the display mode (see Table 2).

10.5 Set Y address of RAM

Y3 to Y0 defines the Y address vector address of the display RAM (see Table 3).

Y ₃	Y ₂	Y ₁	Y ₀	CONTENT	ALLOWED X RANGE
0	0	0	0	bank 0 (display RAM)	0 to 101
0	0	0	1	bank 1 (display RAM)	0 to 101
0	0	1	0	bank 2 (display RAM)	0 to 101
0	0	1	1	bank 3 (display RAM)	0 to 101
0	1	0	0	bank 4 (display RAM)	0 to 101
0	1	0	1	bank 5 (display RAM)	0 to 101
0	1	1	0	bank 6 (display RAM)	0 to 101
0	1	1	1	bank 7 (display RAM)	0 to 101
1	0	0	0	bank 8 (display RAM)	0 to 101

Note

1. In bank 8 only the LSB is accessed.

10.6 Set X address of RAM

The X address points to the columns. The range of X is 0 to 101 (65H).

10.7 Set HV-generator stages

The PCF8812 incorporates a software configurable voltage multiplier. After reset (\overline{RES}) the voltage multiplier is set to $2 \times V_{DD2}$. Other voltage multiplier factors are set via the command 'Set HV-gen stages' (see Tables 1 and 2).

PCF8812

10.8 Bias system

The bias voltage levels are set in the ratio of R - R - nR - R - R giving a $\frac{1}{(n+4)}$ bias system. Different multiplex rates require different factors 'n' (see Table 4). This is programmed by BS2 to BS0. For MUX1 to MUX65 the optimum bias value 'n' is given by: $n = \sqrt{65} - 3 = 5.062 = 5$ resulting in $\frac{1}{9}$ bias.

Table 4	Programming the required bias system	
---------	--------------------------------------	--

BS2	BS1	BS0	n	RECOMMEND MUX RATE
0	0	0	7	1 to 100
0	0	1	6	1 to 80
0	1	0	5	1 to 65 or 1 to 65
0	1	1	4	1 to 48
1	0	0	3	1 to 40 or 1 to 34
1	0	1	2	1 to 24
1	1	0	1	1 to 18 or 1 to 16
1	1	1	0	1 to 10 or 1 to 9 or 1 to 8

Table 5 LCD bias voltage

SYMBOL	BIAS VOLTAGES	BIAS VOLTAGES FOR $n = 5 (^{1}/_{9} BIAS)$
V1	V _{LCD}	V _{LCD}
V2	$\frac{(n+3)}{(n+4)}$	$^{8}/_{9} \times V_{LCD}$
V3	$\frac{(n+2)}{(n+4)}$	$^{7}/_{9} \times V_{LCD}$
V4	$\frac{2}{(n+4)}$	$^{2}/_{9} \times V_{LCD}$
V5	$\frac{1}{(n+4)}$	$^{1/9} \times V_{LCD}$
V6	V _{SS}	V _{SS}

10.9 Temperature control

Due to the temperature dependency of the liquid crystals viscosity the LCD controlling voltage V_{LCD} must be increased with lower temperature to maintain optimum contrast. There are 4 different temperature coefficients available in the PCF8812 (see Fig.13). The coefficients are selected by bits TC1 to TC0. Table 6 shows the typical values of the different temperature coefficients. The coefficients are proportional to the programmed V_{LCD} .

10.10 Set VOP value

The operating voltage V_{LCD} can be set by software. The generated voltage is dependent on temperature, programmed Temperature Coefficient (TC) and the programmed voltage at reference temperature (T_{cut}).

$$V_{LCD(T)} = (a + V_{OP} \times b)(1 + (T - T_{cut}) \times TC)$$
 (1)

The voltage at reference temperature $[V_{LCD}(T = T_{cut})]$ can be calculated as follows:

$$V_{LCD(T = T_{cut})} = (a + V_{OP} \times b)$$
 (2)

PCF8812

The parameters are explained in Table 6. The maximum voltage that can be generated is dependent on the V_{DD2} voltage and the display load current. Two overlapping V_{LCD} ranges are selectable via the command 'HV-gen control'. For the LOW (PRS = 0) range $a = a_1$ and for the HIGH (PRS = 1) range $a = a_2$ with steps equal to 'b' in both ranges. It should be noted that the charge pump is turned off if V_{OP} 6 to 0 and the bit PRS are all set to zero (see Fig.14).

For MUX 1 to 65 the optimum operating voltage of the liquid can be calculated as follows;

$$V_{LCD} = \frac{1 + \sqrt{65}}{\sqrt{2} \times \left(1 - \frac{1}{\sqrt{65}}\right)} \times V_{th} = 6.85 \times V_{th}$$
 (3)

where V_{th} is the threshold voltage of the liquid crystal material used.

Table 6	Typical values for parameters for the
	HV-generator programming

SYMBOL	VALUE	UNIT
a1	2.94 (PRS = 0)	V
a2	6.75 (PRS = 1)	V
b	0.03	V
T _{cut}	27	٦°

As the programming range for the internally generated V_{LCD} allows values above the maximum allowed V_{LCD} (9 V) the user has to ensure, while setting the V_{OP} register and selecting the Temperature Compensation (TC), that under all conditions and including all tolerances that V_{LCD} remains below 9 V.

PCF8812

11 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); see notes 1 and 2

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD1}	supply voltage		-0.5	+6.5	V
V _{DD2} ,V _{DD3}	supply voltage for internal voltage generator		-0.5	+4.5	V
V _{LCD}	supply voltage range LCD		-0.5	+9.0	V
Vi	all input voltages		-0.5	V _{DD} + 0.5	V
I _{SS}	ground supply current		-50	+50	mA
l _i ,l _o	DC input or output current		-10	+10	mA
P _{tot}	total power dissipation		-	300	mW
Po	power dissipation per output		-	30	mW
T _{stg}	storage temperature		-65	+150	°C
V _{es}	electrostatic handling voltage	note 3	-	±1900	V
		note 4	-	±200	V

Notes

- 1. Stresses above those listed under limiting values may cause permanent damage to the device.
- Parameters are valid over operating temperature range unless otherwise specified. All voltages are referenced to V_{SS} unless otherwise specified.
- 3. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 k Ω resistor.
- 4. Machine model: equivalent to discharging a 200 pF capacitor through a 0.75 μ H series inductor.

12 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS devices").

PCF8812

13 DC CHARACTERISTICS

 V_{DD} = 2.5 to 5.5 V; V_{SS} = 0 V; V_{LCD} = 4.5 to 9.0 V; T_{amb} = -40 to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD1}	supply voltage		+2.5	-	+5.5	V
V _{DD2} ,V _{DD3}	supply voltage for internal voltage generator	LCD voltage internally generated (voltage generator enabled)	+2.5	-	+4.5	V
V _{LCDIN}	LCD input supply voltage	LCD voltage externally supplied (voltage generator disabled)	+4.5	_	+9.0	V
V _{LCDOUT}	LCD output supply voltage	LCD voltage internally generated (voltage generator enabled); note 1	+4.5	-	+9.0	V
I _{DD(tot)}	total supply current	normal mode; $V_{DD1} = 2.8 \text{ V}$; $V_{LCD} = 7.6 \text{ V}$; $f_{SCLK} = 0$; $T_{amb} = 25 \text{ °C}$; no display load; 4 × charge pump; notes 2 and 3	_	220	350	μA
		Power-down mode; with internal or external V _{LCD} supply voltage; note 4	-	1.5	-	μA
I _{LCDIN}	supply current from external V _{LCD}	$V_{DD1} = 2.8 V; V_{LCD} = 7.6 V;$ $f_{SCLK} = 0; T = 25 °C;$ no display load; notes 2, 3 and 5	_	30	-	μA
Logic			·		·	
V _{IL}	LOW-level input voltage		V _{SS}	-	0.3V _{DD}	V
V _{IH}	HIGH-level input voltage		0.7V _{DD}	-	V _{DD}	V
IIL	input leakage current	$V_{I} = V_{DD1} \text{ or } V_{SS1}$	-1	-	+1	μA
Column and	d row outputs					
R _{col}	column output resistance COL 0 to COL 101	$I_L = 10 \ \mu A$ outputs tested one at a time	-	12	20	kΩ
R _{row}	row output resistance ROW 0 to ROW 64	$I_L = 10 \ \mu A$ outputs tested one at a time	-	12	20	kΩ
V _{bias(col)}	column bias tolerance COL 0 to COL 101		-100	0	+100	mV
V _{bias(row)}	row bias tolerance ROW 0 to ROW 64		-100	0	+100	mV

PCF8812

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LCD supply	voltage generator			•	•	
V _{LCD}	V _{LCD} tolerance internally generated	$\begin{split} V_{DD1} &= 2.8 \text{ V}; \ V_{LCD} = 7.6 \text{ V}; \\ f_{SCLK} &= 0; \ T_{amb} = 25 \ ^{\circ}\text{C}; \\ \text{display-load} &= 10 \ \mu\text{A}; \\ \text{notes 3, 6 and 7} \end{split}$	-300	0	+300	mV
ТС	V _{LCD} temperature coefficient	$\begin{split} V_{DD1} &= 2.8 \text{ V; } \text{f}_{\text{SCLK}} = 0; \\ T_{amb} &= -20 \text{ to } +70 ^\circ\text{C}; \\ \text{display load} &= 10 \mu\text{A}; \text{ note } 3 \end{split}$				
		coefficient 0	-	0 × 10 ⁻³	-	1/°C
		coefficient 1	-	$-0.76 imes 10^{-3}$	-	1/°C
		coefficient 2	-	$-1.05 imes 10^{-3}$	-	1/°C
		coefficient 3	_	$-2.10 imes 10^{-3}$	_	1/°C

Notes

- 1. The maximum possible V_{LCD} voltage that may be generated is dependent on voltage, temperature and (display) load.
- 2. Internal clock.
- 3. $f_{SCLK} = 0$ means no serial clock.
- 4. During power-down all static currents are switched off.
- 5. If external V_{LCD} ; the display load current is not transmitted to I_{DD} .
- 6. Tolerance depend on the temperature; (typical null at $T_{amb} = 27 \text{ °C}$, maximum tolerance values are measured at the temperate range limit, maximum tolerance is proportional to V_{LCD}).
- 7. For TC1 to TC3.

14 AC CHARACTERISTICS

 V_{DD} = 2.5 to 5.5 V; V_{SS} = 0 V; V_{LCD} = 4.5 to 9.0 V; T_{amb} = -40 to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f _{OSC}	oscillator frequency	V _{DD1} = 2.8 V; T _{amb} = -20 to +70 °C	22	38	67	kHz
f _{clk(ext)}	external clock frequency		20	38	67	kHz
f _{frame}	frame frequency	f _{OSC} or f _{clk(ext)} = 38 kHz; note 1	-	73	-	Hz
t _{VHRL}	V _{DD} to RES LOW	see Fig.16	0	-	1	μs
t _{RW}	RES LOW pulse width	see Fig.16	500	_	-	ns
Serial bus t	iming characteristics					
f _{SCLK}	clock frequency	V_{DD1} = 3.0 V ±10%; all signal timing is based on 20% to 80% of V _{DD} and a maximum rise and fall time of 10 ns	0	-	4.00	MHz
t _{cyc}	clock cycle time		250	_	-	ns
t _{PWH1}	SCLK pulse width HIGH		100	_	-	ns
t _{PWL1}	SCLK pulse width LOW		100	-	-	ns
t _{S2}	SCE set-up time		60	_	_	ns

PCF8812

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{H2}	SCE hold time		100	-	-	ns
t _{PWH2}	SCE minimum HIGH time		100	-	-	ns
t _{H5}	SCE start hold time	note 2	100	-	-	ns
t _{S3}	D/C set-up time		100	-	-	ns
t _{H3}	D/\overline{C} hold time		100	-	_	ns
t _{S4}	SDIN set-up time		100	-	-	ns
t _{H4}	SDIN hold time		100	-	-	ns

Notes

1.
$$f_{frame} = \frac{f_{clk(ext)}}{520}$$

2. t_{H5} is the time from the previous SCLK positive edge (irrespective of the state of \overline{SCE}) to the negative edge of \overline{SCE} (see Fig.15).

15 SERIAL INTERFACE

16 RESET

17 APPLICATION INFORMATION

Table 7 Programming example for PCF8812

OTED			;	SERIA	L BUS	ВҮТЕ						
STEP	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DISPLAY	OPERATION	
1	start										SCE is going low	
2	0	0	0	1	0	0	0	0	1		function set; $PD = 0$, $V = 0$; select extended instruction set (H = 1 mode)	
3	0	0	0	0	1	0	0	0	1		set charge pump range HIGH PRS = 1	
4	0	1	0	0	1	1	1	0	0		set V_{OP}; V_{OP} is set to 7.6 V	
5	0	0	0	1	0	0	0	0	0		function set; $PD = 0$; $V = 0$; select normal instruction set (H = 0 mode)	
6	0	0	0	0	0	1	1	0	0		display control; set normal mode $(D = 1; E = 0)$.	
7	1	1	1	1	1	1	0	0	0	MGS405	data write; Y and X are initialized to 0 by default, so they aren't set here	

OTED			:	SERIA	L BUS	ВҮТЕ	E				
STEP	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DISPLAY	OPERATION
8	1	1	0	1	0	0	0	0	0	MGS406	data write
9	1	1	1	1	0	0	0	0	0	MGS407	data write
10	1	0	0	0	0	0	0	0	0	MGS407	data write
11	1	1	1	1	1	1	0	0	0	MGS409	data write
12	1	0	0	1	0	0	0	0	0	MGS410	data write
13	1	1	1	1	1	1	0	0	0	MGS411	data write

PCF8812

OTED			;	SERIA	L BUS	ВҮТЕ	E				
STEP	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DISPLAY	OPERATION
14	0	0	0	0	0	1	1	0	1	MGS412	display control; set inverse video mode (D = 1; E = 1)
15	0	1	0	0	0	0	0	0	0	MGS412	set X-address of RAM; set address to 0000000
16	1	0	0	0	0	0	0	0	0	MGS414	data write

The pinning of the PCF8812 is optimized for single plane wiring e.g. for chip-on-glass display modules. Display size: 65×102 pixels.

PCF8812

The required minimum value for the external capacitors in an application with the PCF8812 are as follows:

 $C_{VLCD} = 100 \text{ nF} (\text{minimum})$

 $C_{VDD};\,C_{VDD1};\,C_{VDD2}$ = 1 μF (minimum).

Higher capacitor values are recommended for ripple reduction.

18 CHIP INFORMATION

The PCF8812 is manufactured in n-well CMOS technology. The substrate is at $V_{\mbox{\scriptsize SS}}$ potential.

19 PAD INFORMATION

Table 8	Bonding pad dimensions
---------	------------------------

NAME	DIMENSION
Pad pitch	70 μm
Pad size; aluminium	$62 \times 100 \ \mu m$
Bump dimensions	$50 \times 90 \times 17.5 \ \mu m \ (\pm 5)$
Wafer thickness; including bumps	maximum 430 μm
Wafer thickness; without bumps	381 μm typ.

20 BONDING PAD LOCATION

Table 9Bonding pad locationAll x and y coordinates are referenced to the centre of the

All x and y coordinates are referenced to the centre of the chip (dimensions in μ m; see Fig.20).

SYMBOL	PAD	COORDINATES		
	PAD	x	У	
RES	1	+3870	+934.6	
ROW 32	2	+4270	+934.6	
ROW 31	3	+4340	+934.6	
ROW 30	4	+4410	+934.6	
ROW 29	5	+4480	+934.6	
ROW 28	6	+4550	+934.6	
ROW 27	7	+4620	+934.6	
ROW 26	8	+4690	+934.6	
ROW 25	9	+4760	+934.6	
ROW 24	10	+4830	+934.6	
ROW 23	11	+4900	+934.6	
ROW 22	12	+4970	+934.6	
ROW 21	13	+5040	+934.6	
ROW 20	14	+5110	+934.6	
ROW 19	15	+5180	+934.6	
dummy pad	16	+5320	+934.6	
dummy pad	17	+5355	-934.6	
ROW 0	18	+5005	-934.6	
ROW 1	19	+4935	-934.6	
ROW 2	20	+4865	-934.6	
ROW 3	21	+4795	-934.6	
ROW 4	22	+4725	-934.6	
ROW 5	23	+4655	-934.6	
ROW 6	24	+4585	-934.6	
ROW 7	25	+4515	-934.6	
ROW 8	26	+4445	-934.6	
ROW 9	27	+4375	-934.6	
ROW 10	28	+4305	-934.6	
ROW 11	29	+4235	-934.6	
ROW 12	30	+4165	-934.6	
ROW 13	31	+4095	-934.6	
ROW 14	32	+4025	-934.6	
ROW 15	33	+3955	-934.6	
ROW 16	34	+3885	-934.6	
ROW 17	35	+3815	-934.6	
ROW 18	36	+3745	-934.6	

		COORD	INATES	
SYMBOL	PAD	x	у	
COL 0	37	+3605	-934.6	
COL 1	38	+3535	-934.6	
COL 2	39	+3465	-934.6	
COL 3	40	+3395	-934.6	
COL 4	41	+3325	-934.6	
COL 5	42	+3255	-934.6	
COL 6	43	+3185	-934.6	
COL 7	44	+3115	-934.6	
COL 8	45	+3045	-934.6	
COL 9	46	+2975	-934.6	
COL 10	47	+2905	-934.6	
COL 11	48	+2835	-934.6	
COL 12	49	+2765	-934.6	
COL 13	50	+2695	-934.6	
COL 14	51	+2625	-934.6	
COL 15	52	+2555	-934.6	
COL 16	53	+2485	-934.6	
COL 17	54	+2415	-934.6	
COL 18	55	+2345	-934.6	
COL 19	56	+2275	-934.6	
COL 20	57	+2205	-934.6	
COL 21	58	+2135	-934.6	
COL 22	59	+2065	-934.6	
COL 23	60	+1995	-934.6	
COL 24	61	+1925	-934.6	
COL 25	62	+1785	-934.6	
COL 26	63	+1715	-934.6	
COL 27	64	+1645	-934.6	
COL 28	65	+1575	-934.6	
COL 29	66	+1505	-934.6	
COL 30	67	+1435	-934.6	
COL 31	68	+1365	-934.6	
COL 32	69	+1295	-934.6	
COL 33	70	+1225	-934.6	
COL 34	71	+1155	-934.6	
COL 35	72	+1085	-934.6	
COL 36	73	+1015	-934.6	
COL 37	74	+945	-934.6	
COL 38	75	+875	-934.6	

SYMBOL	DAD	PAD		CVMDOL		COORDINATES	
STWBUL	PAD	x	y SYMBOL	PAD	x	У	
COL 39	76	+805	-934.6	COL 78	115	-2065	-934.6
COL 40	77	+735	-934.6	COL 79	116	-2135	-934.6
COL 41	78	+665	-934.6	COL 80	117	-2205	-934.6
COL 42	79	+595	-934.6	COL 81	118	-2275	-934.6
COL 43	80	+525	-934.6	COL 82	119	-2345	-934.6
COL 44	81	+455	-934.6	COL 83	120	-2415	-934.6
COL 45	82	+385	-934.6	COL 84	121	-2485	-934.6
COL 46	83	+315	-934.6	COL 85	122	-2555	-934.6
COL 47	84	+245	-934.6	COL 86	123	-2625	-934.6
COL 48	85	+175	-934.6	COL 87	124	-2695	-934.6
COL 49	86	+105	-934.6	COL 88	125	-2765	-934.6
COL 50	87	-35	-934.6	COL 89	126	-2835	-934.6
COL 51	88	-105	-934.6	COL 90	127	-2905	-934.6
COL 52	89	-175	-934.6	COL 91	128	-2975	-934.6
COL 53	90	-245	-934.6	COL 92	129	-3045	-934.6
COL 54	91	-315	-934.6	COL 93	130	-3115	-934.6
COL 55	92	-385	-934.6	COL 94	131	-3185	-934.6
COL 56	93	-455	-934.6	COL 95	132	-3255	-934.6
COL 57	94	-525	-934.6	COL 96	133	-3325	-934.6
COL 58	95	-595	-934.6	COL 97	134	-3395	-934.6
COL 59	96	-665	-934.6	COL 98	135	-3465	-934.6
COL 60	97	-735	-934.6	COL 99	136	-3535	-934.6
COL 61	98	-805	-934.6	COL 100	137	-3605	-934.6
COL 62	99	-875	-934.6	COL 101	138	-3675	-934.6
COL 63	100	-945	-934.6	ROW 50	139	-3815	-934.6
COL 64	101	-1015	-934.6	ROW 49	140	-3885	-934.6
COL 65	102	-1085	-934.6	ROW 48	141	-3955	-934.6
COL 66	103	-1155	-934.6	ROW 47	142	-4025	-934.6
COL 67	104	-1225	-934.6	ROW 46	143	-4095	-934.6
COL 68	105	-1295	-934.6	ROW 45	144	-4165	-934.6
COL 69	106	-1365	-934.6	ROW 44	145	-4235	-934.6
COL 70	107	-1435	-934.6	ROW 43	146	-4305	-934.6
COL 71	108	-1505	-934.6	ROW 42	147	-4375	-934.6
COL 72	109	-1575	-934.6	ROW 41	148	-4445	-934.6
COL 73	110	-1645	-934.6	ROW 40	149	-4515	-934.6
COL 74	111	-1715	-934.6	ROW 39	150	-4585	-934.6
COL 75	112	-1785	-934.6	ROW 38	151	-4655	-934.6
COL 76	113	-1925	-934.6	ROW 37	152	-4725	-934.6
COL 77	114	-1995	-934.6	ROW 36	153	-4795	-934.6

SYMPOL	DAD	PAD		SVMDOI		COORDINATES	
SYMBOL	MBOL PAD X Y SYMBOL	PAD	x	у			
ROW 35	154	-4865	-934.6	V _{DD2}	193	-2130	+934.6
ROW 34	155	-4935	-934.6	OSC	194	-1890	+934.6
ROW 33	156	-5005	-934.6	SDIN	195	-1650	+934.6
dummy pad	157	-5355	-934.6	D/C	196	-1410	+934.6
dummy pad	158	-5320	+934.6	SCE	197	-1170	+934.6
ROW 51	159	-5180	+934.6	T2	198	-930	+934.6
ROW 52	160	-5110	+934.6	SCLK	199	-690	+934.6
ROW 53	161	-5040	+934.6	V _{SS2}	200	-530	+934.6
ROW 54	162	-4970	+934.6	V _{SS2}	201	-450	+934.6
ROW 55	163	-4900	+934.6	V _{SS2}	202	-370	+934.6
ROW 56	164	-4830	+934.6	V _{SS2}	203	-290	+934.6
ROW 57	165	-4760	+934.6	V _{SS2}	204	-210	+934.6
ROW 58	166	-4690	+934.6	V _{SS2}	205	-130	+934.6
ROW 59	167	-4620	+934.6	V _{SS2}	206	-50	+934.6
ROW 60	168	-4550	+934.6	V _{SS2}	207	+30	+934.6
ROW 61	169	-4480	+934.6	V _{SS2}	208	+110	+934.6
ROW 62	170	-4410	+934.6	V _{SS2}	209	+190	+934.6
ROW 63	171	-4340	+934.6	V _{SS2}	210	+270	+934.6
ROW 64	172	-4270	+934.6	V _{SS2}	211	+350	+934.6
dummy pad	173	-4050	+934.6	V _{SS2}	212	+430	+934.6
V _{DD1}	174	-3890	+934.6	V _{SS2}	213	+510	+934.6
V _{DD1}	175	-3810	+934.6	V _{SS1}	214	+670	+934.6
V _{DD1}	176	-3730	+934.6	V _{SS1}	215	+750	+934.6
V _{DD1}	177	-3650	+934.6	V _{SS1}	216	+830	+934.6
V _{DD1}	178	-3570	+934.6	V _{SS1}	217	+910	+934.6
V _{DD1}	179	-3490	+934.6	T1	218	+1150	+934.6
V _{DD3}	180	-3250	+934.6	T5	219	+1630	+934.6
V _{DD2}	181	-3090	+934.6	T4	220	+2030	+934.6
V _{DD2}	182	-3010	+934.6	V _{SS1}	221	+2110	+934.6
V _{DD2}	183	-2930	+934.6	V _{SS1}	222	+2190	+934.6
V _{DD2}	184	-2850	+934.6	Т3	223	+2270	+934.6
V _{DD2}	185	-2770	+934.6	V _{LCDIN}	224	+2510	+934.6
V _{DD2}	186	-2690	+934.6	V _{LCDIN}	225	+2590	+934.6
V _{DD2}	187	-2610	+934.6	V _{LCDIN}	226	+2670	+934.6
V _{DD2}	188	-2530	+934.6	V _{LCDIN}	227	+2750	+934.6
V _{DD2}	189	-2450	+934.6	V _{LCDIN}	228	+2830	+934.6
V _{DD2}	190	-2370	+934.6	V _{LCDIN}	229	+2910	+934.6
V _{DD2}	191	-2290	+934.6	V _{LCDOUT}	230	+3070	+934.6
V _{DD2}	192	-2210	+934.6	V _{LCDOUT}	231	+3150	+934.6

SYMPOL		COORDINATES		
SYMBOL	PAD	x	у	
V _{LCDOUT}	232	+3230	+934.6	
V _{LCDOUT}	233	+3310	+934.6	
V _{LCDOUT}	234	+3390	+934.6	
V _{LCDOUT}	235	+3470	+934.6	
V _{LCDOUT}	236	+3550	+934.6	
V _{LCDSENSE}	237	+3630	+934.6	
Alignment marks			-	
Circle 1		+5185	-910.8	
Circle 2		-5185	-910.8	
Circle 3		-4160	+909.7	
Circle 4		+4160 +909.7		

Philips Semiconductors

Product specification

65 × 102 pixels matrix LCD driver

PCF8812

2000 Nov 22

32

21 DEVICE PROTECTION DIAGRAM

22 TRAY INFORMATION

Table 10 Tray dimensions

DIMENSION	DESCRIPTION	VALUE
A	pocket pitch; x direction	13.77 mm
В	pocket pitch; y direction	4.37 mm
С	pocket width; x direction	11.04 mm
D	pocket width; y direction	2.24 mm
E	tray width; x direction	50.8 mm
F	tray width; y direction	50.8 mm
G	distance from cut corner to pocket (1 and 1) centre	11.68 mm
Н	distance from cut corner to pocket (1 and 1) centre	5.74 mm
J	tray thickness	3.96 mm
К	tray cross section	1.78 mm
L	tray cross section	2.49 mm
М	pocket depth	0.89 mm
x	no. pockets in x direction	3
У	no. pockets in y direction	10

PCF8812

23 DATA SHEET STATUS

DATA SHEET STATUS	PRODUCT STATUS	DEFINITIONS (1)
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

Note

1. Please consult the most recently issued data sheet before initiating or completing a design.

24 DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

25 DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. **Right to make changes** — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Bare die — All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, Philips Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

Philips Semiconductors – a worldwide company

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Argentina: see South America Tel. +31 40 27 82785, Fax. +31 40 27 88399 Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Tel. +64 9 849 4160, Fax. +64 9 849 7811 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Pakistan: see Singapore Belgium: see The Netherlands Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Brazil: see South America Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Tel. +48 22 5710 000, Fax. +48 22 5710 001 Portugal: see Spain Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Romania: see Italy China/Hong Kong: 501 Hong Kong Industrial Technology Centre, Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Tel. +852 2319 7888, Fax. +852 2319 7700 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Colombia: see South America Czech Republic: see Austria Slovakia: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Slovenia: see Italy Tel. +45 33 29 3333, Fax. +45 33 29 3905 South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, Finland: Sinikalliontie 3, FIN-02630 ESPOO, 2092 JOHANNESBURG, P.O. Box 58088 Newville 2114, Tel. +358 9 615 800, Fax. +358 9 6158 0920 Tel. +27 11 471 5401, Fax. +27 11 471 5398 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Tel. +55 11 821 2333. Fax. +55 11 821 2382 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Spain: Balmes 22, 08007 BARCELONA Tel. +34 93 301 6312, Fax. +34 93 301 4107 Hungary: see Austria Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI), Tel. +39 039 203 6838. Fax +39 039 203 6800 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Middle East: see Italy

For all other countries apply to: Philips Semiconductors,

Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,

© Philips Electronics N.V. 2000

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

403512/01/pp36

Date of release: 2000 Nov 22

Document order number: 9397 750 07415

Let's make things better.

Internet: http://www.semiconductors.philips.com

SCA70

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,

TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. 60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260, Tel. +66 2 361 7910, Fax. +66 2 398 3447 Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,

ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381, Fax. +1 800 943 0087 Uruguay: see South America

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 3341 299, Fax.+381 11 3342 553

Vietnam: see Singapore

The Netherlands, Fax. +31 40 27 24825