INTEGRATED CIRCUITS

Product specification Supersedes data of November 1993 File under Integrated Circuits, IC12 October 1994

Philips Semiconductors

FEATURES

- Single chip LCD controller / driver
- 1 or 2-line display of up to 24 characters per line, or 2 or 4 lines of up to 12 characters per line
- 5 × 7 character format plus cursor; 5 × 8 for kana (Japanese syllabary) and user defined symbols
- On-chip:
 - generation of LCD supply voltage (external supply also possible)
 - generation of intermediate LCD bias voltages
 - oscillator requires no external components (external clock also possible)
- Display data RAM: 80 characters
- Character generator ROM: 240 characters
- Character generator RAM: 16 characters
- 4 or 8-bit parallel bus or 2-wire I²C-bus interface
- CMOS/TTL compatible
- 32 row, 60 column outputs
- MUX rates 1 : 32 and 1 : 16
- Uses common 11 code instruction set
- Logic supply voltage range, $V_{DD} V_{SS}$: 2.5 to 6 V
- Display supply voltage range, V_{DD} V_{LCD}: 3.5 to 9 V
- Low power consumption.

APPLICATIONS

- Telecom equipment
- Portable instruments
- Point of sale terminals.

GENERAL DESCRIPTION

The PCF2116 family of LCD controller/drivers consists of 2 similar members: PCF2116X and PCF2114X, later

ORDERING INFORMATION

referred to as PCF2116. The specific differences are expressed in separate paragraphs for PCF2116X and PCF2114X respectively. The letter X in PCF2116X or PCF2114X specifies the character set in the character generator ROM (CGROM). The different character sets currently available are specified by the letters A, C, G and J (see Figs 7 to 10). Set 'A' in PCF2116A characterises the built-in standard character set. Other character sets are available on request.

The PCF2116 is a low-power CMOS LCD controller and driver, designed to drive a split screen dot matrix LCD display of 1 or 2 lines by 24 characters or 2 or 4 lines by 12 characters with 5×8 dot format. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD bias voltages, resulting in a minimum of external components and lower system power consumption. The chip contains a character generator and displays alphanumeric and kana characters. The PCF2116 interfaces to most microcontrollers via a 4 or 8-bit bus or via the 2-wire l²C-bus.

Packages

- PCF2116XU/10; chip on FFC
- PCF2114XU/10; chip on FFC
- PCF2116XU/12; chip with bumps on FFC
- PCF2114XU/12; chip with bumps on FFC
- PCF2116XH; SQFP128 (14 × 20 mm)
- Pin grid array PGA144 (samples only).

For further details see Chapters "Bonding pad locations" and "Package outline".

TYPE NUMBER		PAC	KAGE	
	PINS	PIN POSITION	MATERIAL	CODE
PCF2114XH	128	SQFP128	plastic	SOT387-1
PCF2116XH	128	SQFP128	plastic	SOT387-1
PCF2114XU	116	FFC116	_	-
PCF2116XU	116	FFC116	_	_

PCF2116 family (PCF2114X; PCF2116X)

BLOCK DIAGRAM

PCF2116 family (PCF2114X; PCF2116X)

PINNING

SYMBOL	SQFP128 PIN	FFC PAD	DESCRIPTION
R31	1	27	LCD row driver output
n.c.	2 and 3	_	not connected
R32	4	28	LCD row driver output
C60 to C30	5 to 35	29 to 59	LCD column driver outputs 60 to 30
n.c.	36 and 37	_	not connected
C29 to C2	38 to 65	60 to 87	LCD column driver outputs 29 to 2
n.c.	66 and 67	_	not connected
C1	68	88	LCD column driver output 1
R24 to R17	69 to 76	89 to 96	LCD row driver outputs
R8 to R1	77 to 84	97 to 104	LCD row driver outputs
n.c.	85 and 86	_	not connected
DB7	87	105	bidirectional data bus
SCL	88	106	I ² C serial clock input
DB6	89	107	bidirectional data bus
SDA	90	108	I ² C serial data input/output
DB5	91	109	bidirectional data bus
V ₀	92	110	control input for V _{LCD}
V _{LCD1}	93	111	LCD supply voltage
DB4	94	112	bidirectional data bus
V _{LCD2}	95	113	LCD supply voltage
DB3	96	114	bidirectional data bus
V _{LCD3}	97	115	LCD supply voltage
DB2	98	116	bidirectional data bus
n.c.	99 to 101	_	not connected
OSC	102	1	oscillator/external clock input
DB1	103	2	bidirectional data bus
V _{DD2}	104	3	supply voltage
DB0	105	4	bidirectional data bus
V _{DD1}	106	5	supply voltage
SA0	107	6	I ² C address pin
E	108	7	data bus clock
V _{SS1}	109	8	ground (logic)
R/W	110	9	read/write
T1	111	10	test pad (connect to V _{SS})
V _{SS2}	112	11	ground (logic)
RS	113	12	register select
n.c.	114	_	not connected
R9 to R16	115 to 122	13 to 20	LCD row driver outputs
R25 to R30	123 to 128	21 to 26	LCD row driver outputs

PIN FUNCTIONS

RS: register select⁽¹⁾

RS selects the register to be accessed for read and write. RS = logic 0 selects the instruction register for write and the busy flag and address counter for read. RS = logic 1 selects the data register for both read and write. There is an internal pull-up on pin RS.

R/W: read/write⁽¹⁾

 R/\overline{W} selects either the read (R/\overline{W} = logic 1) or write (R/\overline{W} = logic 0) operation. There is an internal pull-up on this pin.

E: data bus clock⁽¹⁾

The E pin is set HIGH to signal the start of a read or write operation. Data is clocked in or out of the chip on the negative edge of the clock.

DB0 to DB7: data bus⁽¹⁾

The bidirectional, 3-state data bus transfers data between the system controller and the PCF2116. DB7 may be used as the busy flag, signalling that internal operations are not yet completed. In 4-bit operations the 4 higher order lines DB4 to DB7 are used; DB0 to DB3 must be left open circuit. There is an internal pull-up on each of the data lines.

C1 to C60: column driver outputs

These pins output the data for pairs of columns. This arrangement permits optimized COG layout for 4-line by 12 characters.

R1 to R32: row driver outputs

These pins output the row select waveforms to the left and right halves of the display.

V_{LCD}: LCD power supply

Negative power supply for the liquid crystal display. This may be generated on-chip or supplied externally.

V₀: V_{LCD} control input

The input level at this pin determines the generated $\ensuremath{V_{\text{LCD}}}$ output voltage.

PCF2116 family (PCF2114X; PCF2116X)

OSC: oscillator

When the on-chip oscillator is used this pin must be connected to V_{DD} . An external clock signal, if used, is input at this pin.

SCL: serial clock line

Input for the I²C-bus clock signal.

SDA: serial data line

I/O for the I²C-bus data line.

SAO: address pin

The hardware sub-address line is used to program the device sub-address for 2 different PCF2116s on the same $I^{2}C$ -bus.

T1: test pad

Must be connected to V_{SS} . Not user accessible.

When I²C-bus is used, the parallel interface pin E must be defined: E = logic 0; in I²C-bus read mode DB0 to DB7 must be left open circuit.

PCF2116 family (PCF2114X; PCF2116X)

BLOCK DIAGRAM FUNCTIONS

LCD supply voltage generator

The on-chip voltage generator is controlled by bit G of the function set command and V_0 .

 V_0 is a high-impedance input and draws no current from the system power supply. Its range is between V_{SS} and $V_{DD}-1$ V. When V_0 is connected to V_{DD} the generator is switched off and an external voltage must be supplied at pin V_{LCD} . This may be more negative than V_{SS} .

When G = logic 1 the generator produces a negative voltage at pin V_{LCD} , controlled by the input voltage at pin V_0 . The LCD operating voltage is given by the relationship:

 $V_{OP} = 1.8V_{DD} - V_0$

Where:

 $V_{OP} = V_{DD} - V_{LCD}$ $V_{LCD} = V_0 - (0.8V_{DD})$

When G = logic 0, the generated output voltage V_{LCD} is equal to V_0 (between V_{SS} and V_{DD}). In this instance:

 $V_{\text{OP}} = V_{\text{DD}} - V_0$

When V_{LCD} is generated on-chip the V_{LCD} pin should be decoupled to V_{DD} with a suitable capacitor. V_{DD} and V_0 must be selected to limit the maximum value of V_{OP} to 9 V.

Figure 3 shows the two control characteristics for the generator.

LCD bias voltage generator

The intermediate bias voltages for the LCD display are also generated on-chip. This removes the need for an external resistive bias chain and significantly reduces the system power consumption. The optimum levels depend on the multiplex rate and are selected automatically when the number of lines in the display is defined.

The optimum value of V_{OP} depends on the multiplex rate, the LCD threshold voltage (V_{th}) and the number of bias levels and is given by the relationships in Table 1.

Using a 5-level bias scheme for 1 : 16 mux rate allows $V_{OP} < 5$ V for most LCD liquids. The effect on the display contrast is negligible.

Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC pin must be connected to V_{DD} .

External clock

If an external clock is to be used this is input at the OSC pin. The resulting display frame frequency is given by $f_{frame} = f_{osc} / 2304$. A clock signal must always be present, otherwise the LCD may be frozen in a DC state.

Power-on reset

The power-on reset block initializes the chip after power-on or power failure.

Registers

The PCF2116 has two 8-bit registers, an instruction register (IR) and a data register (DR). The register select signal (RS) determines which register will be accessed.

The instruction register stores instruction codes such as display clear and cursor shift, and address information for the Display Data RAM (DDRAM) and Character Generator RAM (CGRAM). The instruction register can be written from but not read by the system controller.

The data register temporarily stores data to be read from the DDRAM and CGRAM. When reading, data from the DDRAM or CGRAM corresponding to the address in the address counter is written to the data register prior to being read by the read data instruction.

Busy flag

The busy flag indicates the internal status of the PCF2116, a logic 1 indicating that the chip is busy and further instructions will not be accepted. The busy flag is output to pin DB7 when RS = logic 0 and R/W = logic 1. Instructions should only be written after checking that the busy flag is logic 0 or waiting for the required number of clock cycles.

Table 1	Optimum values for V _{OP} .
---------	--------------------------------------

MUX RATE	NUMBER OF BIAS LEVELS	V _{OP} /V _{th}	DISCRIMINATION V _{on} /V _{off}
1 : 16	5	3.67	1.277
1 : 32	6	5.19	1.196

PCF2116 family (PCF2114X; PCF2116X)

Address counter (AC)

The address counter assigns addresses to the DDRAM and CGRAM for reading and writing and is set by the commands 'Set CGRAM Address' and 'Set DDRAM Address'. After a read/write operation the address counter is automatically incremented or decremented by 1. The address counter contents are output to the bus (DB0 to DB6) when RS = logic 0 and R/\overline{W} = logic 1.

Display data RAM (DDRAM)

The display data RAM stores up to 80 characters of display data represented by 8-bit character codes. RAM locations not used for storing display data can be used as general purpose RAM. The basic RAM to display addressing scheme is shown in Fig.4. With no display shift the characters represented by the codes in the first 12 or 24 RAM locations starting at address 00 in line 1 are displayed. Subsequent lines display data starting at addresses 20, 40, or 60 Hex. Figs 5 and 6 show the DDRAM to display mapping principle when the display is shifted.

The address range for a 1-line display is 00 to 4F; for a 2-line display from 00 to 27 (line 1) and 40 to 67 (line 2); for a 4-line display from 00 to 13, 20 to 33, 40 to 53 and

60 to 73 for lines 1, 2, 3 and 4 respectively. For 2 and 4-line displays the end address of one line and the start address of the next line are not consecutive. When the display is shifted each line wraps around independently of the others (Figs 5 and 6).

When data is written into the DDRAM wrap-around occurs from 4F to 00 in 1-line mode and from 27 to 40 and 67 to 00 in 2-line mode; from 13 to 20, 33 to 40, 53 to 60 and 73 to 00 in 4-line mode.

Character generator ROM (CGROM)

The character generator ROM generates 240 character patterns in 5×8 dot format from 8-bit character codes. Figures 7 to 10 show the character sets currently available.

Character generator RAM (CGRAM)

Up to 16 user-defined characters may be stored in the character generator RAM. The CGROM and CGRAM use a common address space, of which the first column is reserved for the CGRAM (see Fig.7). Figure 11 shows the addressing principle for the CGRAM.

Product specification

LCD controller/drivers

PCF2116 family (PCF2114X; PCF2116X)

Cursor control circuit

The cursor control circuit generates the cursor (underline and/or character blink as shown in Fig.12) at the DDRAM address contained in the address counter. When the address counter contains the CGRAM address the cursor will be inhibited.

Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not disturbed by operations on the data buses.

LCD row and column drivers

The PCF2116 contains 32 row and 60 column drivers, which connect the appropriate LCD bias voltages in sequence to the display, in accordance with the data to be displayed. The bias voltages and the timing are selected automatically when the number of lines in the display is selected. Figures 13 and 14 show typical waveforms.

In 1-line mode (1 : 16) the row outputs are driven in pairs: R1/R17, R2/R18 for example. This allows the output pairs to be connected in parallel, providing greater drive capability.

Unused outputs should be left unconnected.

PCF2116 family (PCF2114X; PCF2116X)

LCD controller/drivers

PCF2116 family (PCF2114X; PCF2116X)

lower 6 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	1						••		<u>.</u>							
xxxx	0001	2							•						Ś		
хххх	0010	3										ľ	·	Ņ			
хххх	0011	4					: 	:	·				ņ		÷	÷	::::
xxxx	0100	5		: ::::::::::::::::::::::::::::::::::::	4				· 			•.		.	.	.	
xxxx	0101	6										::					
xxxx	0110	7							÷				<u> </u>	••••			
хххх	0111	8			÷					÷							Τ
xxxx	1000	9						ŀ"	22						l.		
xxxx	1001	10					÷					-	Ţ			:	•
xxxx	1010	11	÷	:	:: ::										ŀ		
xxxx	1011	12	:		:	K.				1	<u>ن</u> .		Ţ				
xxxx	1100	13	:	:								† :				÷	
xxxx	1101	14		•••••										••••		÷	
xxxx	1110	15					•••	! "]							•••		
хххх	1111	16							÷.			• : :	<u>ا</u>				

Fig.7 Character set 'A' in CGROM; PCF2116A; PCF2114A.

PCF2116 family (PCF2114X; PCF2116X)

ower 4 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	CG RAM 1									÷					÷	·
xxxx	0001	2								÷							·:::
xxxx	0010	3							≣			::					
xxxx	0011	4													:	: <u></u> .	·
xxxx	0100	5							┋		÷		4				
xxxx	0101	6															
xxxx	0110	7	•••••						::						•••		I.,I
xxxx	0111	8									Ŧ	•	÷				
xxxx	1000	9							II								
xxxx	1001	10													÷		·
xxxx	1010	11										:	:: ::				
xxxx	1011	12											:				
xxxx	1100	13										:					
xxxx	1101	14										•••••					
xxxx	1110	15	· !! :						••								
xxxx	1111	16		•													

Fig.8 Character set 'C' in CGROM; PCF2116C; PCF2114C.

PCF2116 family (PCF2114X; PCF2116X)

lower 6 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx	0000	CG RAM 1							. •				•••••				
xxxx	0001	2			Ĩ			•				:::	•			•	
xxxx	0010	3	- 						ŀ•	÷			•		÷.		
xxxx	0011	4	Ţ									"					
xxxx	0100	5	÷							·		•*		ŀ	<u>.</u>		
xxxx	0101	6												•			
xxxx	0110	7						÷.	÷					••••			
xxxx	0111	8		:	÷.,					÷	ļ.	<u>.</u>		·			
xxxx	1000	9						ŀ	24	÷		·4.				·	
xxxx	1001	10														:	
хххх	1010	11	•	:	:: ::	-				.					[*••		
xxxx	1011	12								Ĩ	÷	:	•.				.
хххх	1100	13		:				-				.i.:-			·	÷	
xxxx	1101	14		•••••													
xxxx	1110	15	÷::				••	.									
xxxx	1111	16	: 	•••					÷.			:::					

Fig.9 Character set 'G' in CGROM; PCF2116G; PCF2114G.

PCF2116 family (PCF2114X; PCF2116X)

lower 4 bits	upper 4 bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
хххх	0000	CG RAM 1						·		:			•••••				
xxxx	0001	2						·						Ũ		•	
хххх	0010	3	÷	::					ŀ	÷		Ĩ	:::::				
xxxx	0011	4	Т.				:	:·	••	·		:::	::::	·		:::·	••••
xxxx	0100	5	÷										÷	· † ·		ŀr	
xxxx	0101	6							: •						÷		
xxxx	0110	7					ŕ	÷	÷			÷.	Ę.	Ü			
xxxx	0111	8		:	÷.					:			Ę.	Ü	÷		
xxxx	1000	9		:				.	24	÷		Ţ		÷			
xxxx	1001	10	ļ]			Ι	÷							÷			
xxxx	1010	11	÷	÷	:: ::	·"	5	·"]		÷						ľ	: : ::
xxxx	1011	12	• • •		::		-		·		÷	÷				K	
xxxx	1100	13	• •	:									I		.·`•.		
xxxx	1101	14	:	•••••									÷		·	Ì	•
xxxx	1110	15	~	::			••	ŀ!				::			··		
xxxx	1111	16	<u></u>	•••			•••••		÷				÷	Ü	<u>.</u>		

Fig.10 Character set 'J' in CGROM; PCF2116J; PCF2114J.

PCF2116 family (PCF2114X; PCF2116X)

October 1994

PCF2116 family

(PCF2114X; PCF2116X)

LCD controller/drivers

Programming of mux 1 : 16 displays with PCF2114X

The PCF2114 can be used in:

- 1-line mode to drive a 2-line display
- 2 × 12 characters with mux rate 1 : 16, resulting in better contrast. The internal data flow of the chip is optimized for this purpose.

With the Function Set instruction M and N are set to 0, 0. Figures 15 to 17 show DDRAM addresses of the display characters. The second row of each table corresponds to either the right half of a 1-line display or to the second line of a 2-line display. Wrap around of data during display shift or when writing data is non-standard.

Programming of mux 1 : 32 displays with PCF2114X

To drive a 2-line by 24 characters mux 1 : 32 display, use instruction Function Set M, N to 0, 1. Note that the right half of the display needs mirrored column connection compared to a display driven by a PCF2116X.

To drive a 4-line by 12 characters mux 1 : 32 display the PCF2116 operating instructions apply. There is no functional difference between the two chips in this mode. For such an application set M, N to 1,1 with the Function Set instruction.

Reset function

The PCF2116 automatically initializes (resets) when power is turned on. After reset the chip has the following state.

		-	
STEP	E	DESCRIPTI	ON
1	Display clear.		
2	Function set.	DL = 1	8-bit interface
		M, N = 0	1-line display
		G = 0	voltage generator; $V_{LCD} = V_0$
3	Display on/off	D = 0	display off
	control.	C = 0	cursor off
		B = 0	blink off
4	Entry mode set.	I/D = 1	+1 (increment)
		S = 0	no shift
5		s the busy ends. The ay also be	initialized by
6	I ² C-bus interface	reset.	

PCF2116 family (PCF2114X; PCF2116X)

INSTRUCTIONS

Only two PCF2116 registers, the instruction register (IR) and the data register (DR) can be directly controlled by the MPU. Before internal operation, control information is stored temporarily in these registers to allow interface to various types of MPUs which operate at different speeds or to allow interface to peripheral control ICs. The PCF2116 operation is controlled by the instructions shown in Table 3 together with their execution time. Details are explained in subsequent sections.

Instructions are of 4 categories, those that:

- 1. Designate PCF2116 functions such as display format, data length, etc.
- 2. Set internal RAM addresses.
- 3. Perform data transfer with internal RAM.
- 4. Others.

In normal use, category 3 instructions are used most frequently. However, automatic incrementing by 1 (or decrementing by 1) of internal RAM addresses after each data write lessens the MPU program load. The display shift in particular can be performed concurrently with display data write, enabling the designer to develop systems in minimum time with maximum programming efficiency.

During internal operation, no instruction other than the busy flag/address read instruction will be executed.

Because the busy flag is set to logic 1 while an instruction is being executed, check to make sure it is on logic 0 before sending the next instruction or wait for the maximum instruction execution time, as given in Table 3. An instruction sent while the busy flag is HIGH will not be executed.

October 1994

INSTRUCTION	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION	REQUIRED CLOCK CYCLES ⁽²⁾
NOP	0	0	0	0	0	0	0	0	0	0	no operation	0
Clear display	0	0	0	0	0	0	0	0	0	~	Clears entire display and sets DDRAM address 0 in address counter.	165
Return Home	0	0	0	0	0	0	0	0	~	0	Sets DDRAM address 0 in address counter. Also returns shifted display to original position. DDRAM contents remain unchanged.	б
Entry mode set	0	0	0	0	0	0	0	~	Ð	ა	Sets cursor move direction and specifies shift of display. These operations are performed during data write and read.	n
Display control	0	0	0	0	0	0	~	۵	ပ	ш	Sets entire display on/off (D), cursor on/off (C) and blink of cursor position character (B).	ę
Cursor/display shift	0	0	0	0	0	~	S/C	R/L	0	0	Moves cursor and shifts display without changing DDRAM contents.	£
Function set	0	0	0	0	~	DL	z	Σ	ი	0	Sets interface data length (DL), number of display lines (N, M) and voltage generator control (G).	°
Set CGRAM address	0	0	0	٢			Acg	U			Sets CGRAM address	3
Set DDRAM address	0	0	~				App				Sets DDRAM address	ę
Read Busy Flag and Address Counter	0	~	BF				Ac				Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	0
Read data	-	-				read data	data				Reads data from CGRAM or DDRAM.	e

LCD controller/drivers

PCF2116 family (PCF2114X; PCF2116X)

ო

Writes data to CGRAM or DDRAM.

write data

0

<u>_</u>

Write data

Notes

In the I²C-bus mode a control byte is required when RS or R/W is changed; control byte: Co, RS, R/W, 0, 0, 0, 0, 0; command byte: DB7 to DB0. 1. In the I²C-bus mode the DL bit is don't care. 8-bit mode is assumed.

2. Example: $f_{osc} = 150$ kHz, $T_{cy} = \frac{1}{f_{osc}^{osc}} = 6.67$ µs; 3 cycles = 20 µs, 165 cycles = 1.1 ms.

Product specification

PCF2116 family (PCF2114X; PCF2116X)

Table 4 Command bit identities.

BIT	0	1
I/D	decrement	increment
S	display freeze	display shift
D	display off	display on
С	cursor off	cursor on
В	character at cursor position does not blink	character at cursor position blinks
S/C	cursor move	display shift
R/L	left shift	right shift
DL	4 bits	8 bits
G	voltage generator: $V_{LCD} = V_0$	voltage generator; $V_{LCD} = V_0 - 0.8V_{DD}$
N, (M = 0)		
PCF2116	1 line \times 24 characters; mux 1 : 16	2 lines × 24 characters; mux 1 : 32
PCF2114	2 line \times 12 characters; mux 1 : 16	2 lines × 24 characters; mux 1 : 32
N, (M = 1)	reserved	4 lines × 12 characters; mux 1 : 32
BF	end of internal operation	internal operation in progress
Со	last control byte, only data bytes to follow	next two bytes are a data byte and another control byte

PCF2116 family (PCF2114X; PCF2116X)

Clear display

Clear Display writes space code 20 (hexadecimal) into all DDRAM addresses (The character pattern for character code 20 must be blank pattern). Sets the DDRAM address counter to logic 0. Returns display to its original position if it was shifted. Thus, the display disappears and the cursor or blink position goes to the left edge of the display (the first line if 2 or 4 lines are displayed). Sets entry mode I/D = logic 1 (increment mode). S of entry mode does not change.

The instruction Clear Display requires extra execution time. This may be allowed for by checking the busy-flag (BF) or by waiting until 2 ms has elapsed. The latter must be applied where no read-back options are foreseen, as in some chip-on-glass (COG) applications.

Return Home

Return Home sets the DDRAM address counter to logic 0. Returns display to its original position if it was shifted. DDRAM contents do not change. The cursor or blink position goes to the left of the display (the first line if 2 or 4 lines are displayed). I/D and S of entry mode do not change.

Entry mode set

ID

When I/D = logic 1 (0) the DDRAM or CGRAM address increments (decrements) by 1 when data is written into or

read from the DDRAM or CGRAM. The cursor or blink position moves to the right when incremented and to the left when decremented. The cursor and blink are inhibited when the CGRAM is accessed.

S

When S = logic 1, the entire display shifts either to the right (I/D = logic 0) or to the left (I/D = logic 1) during a DDRAM write. Thus it looks as if the cursor stands still and the display moves. The display does not shift when reading from the DDRAM, or when writing into or reading out of the CGRAM. When S = logic 0 the display does not shift.

Display on/off control

D

The display is on when D = logic 1 and off when D = logic 0. Display data in the DDRAM are not affected and can be displayed immediately by setting D to logic 1.

С

The cursor is displayed when C = logic 1 and inhibited when C = logic 0. Even if the cursor disappears, the display functions I/D, etc. remain in operation during display data write. The cursor is displayed using 5 dots in the 8th line (see Fig.12).

В

The character indicated by the cursor blinks when B = logic 1. The blink is displayed by switching between display characters and all dots on with a period of 1 second when $f_{osc} = 150$ kHz (Fig.12). At other clock frequencies the blink period is equal to 150 kHz/f_{osc}. The cursor and the blink can be set to display simultaneously.

Cursor or display shift

Cursor or Display Shift moves the cursor position or the display to the right or left without writing or reading display data. This function is used to correct a character or move the cursor through the display. In 2 or 4-line displays, the cursor moves to the next line when it passes the last position (40 or 20 decimal) of the line. When the displayed data is shifted repeatedly all lines shift at the same time; displayed characters do not shift into the next line. The address counter (AC) content does not change if the only action performed is shift display, but increments or decrements with the cursor shift.

Function set

DL (PARALLEL MODE ONLY)

Sets interface data width. Data is sent or received in bytes (DB7 to DB0) when DL = logic 1 or in two nibbles (DB7 to DB4) when DL = logic 0. When 4-bit width is selected, data is transmitted in two cycles using the parallel bus⁽¹⁾.

Function set from I²C-interface: DL bit can not bet set to 0 from the I²C-interface. If bit DL has been set to 0 via the parallel bus, programming via the I²C-interface is complicated.

Ν, Μ

Sets number of display lines.

G

Controls the V_{LCD} voltage generator characteristic.

Set CGRAM address

Set CGRAM Address sets bit 0 to 5 of the CGRAM address ACG into the address counter (binary

PCF2116 family (PCF2114X; PCF2116X)

 $A_5A_4A_3A_2A_1A_0$). Data can then be written to or read from the CGRAM.

Only bits 0 to 5 of the CGRAM address are set by the set CGRAM address command. Bit 6 can be set using the set DDRAM address command or by using the auto-increment feature during CGRAM write. All bits 0 to 6 can be read using the read BF and address command.

Set DDRAM address

Set DDRAM Address sets the DDRAM address into the address counter (binary $A_6A_5A_4A_3A_2A_1A_0$). Data can then be written to or read from the DDRAM.

Hexadecimal address ranges.

ADDRESS	FUNCTION
00 to 4F	1-line by 24; 2116
00 to 0B and 0C to 4F	2-line by 12; 2114
00 to 27 and 40 to 67	2-line by 24; 2114/2116
00 to 13, 20 to 33, 40 to 53 and 60 to 73	4-line by 12; 2114/2116

Read busy flag and address

Read Busy Flag and Address reads the busy flag (BF). BF = logic 1 indicates that an internal operation is in progress. The next instruction will not be executed if BF = 1. Check the BF status before sending the next instruction.

At the same time, the value of the address counter expressed in binary A_6 to A_0 is read out. The address counter is used by both CGRAM and DDRAM, and its value is determined by the previous instruction.

Write data to CGRAM or DDRAM

Writes binary 8-bit data D_7 to D_0 to the CGRAM or the DDRAM.

Whether the CGRAM or DDRAM is to be written into is determined by the previous specification of CGRAM or DDRAM address setting. After writing, the address automatically increments or decrements by 1, in accordance with the entry mode. Only bits D0 to D4 of CGRAM data are valid, bits D5 to D7 are 'don't care'.

⁽¹⁾ In a 4-bit application DB3 to DB0 are left open (internal pull-ups). Hence in the first function set instruction after power-on G and H are set to 1. A second function set must then be sent (2 nibbles) to set G and H to their required values.

Read data from CGRAM or DDRAM

Reads binary 8-bit data D_7 to D_0 from the CGRAM or DDRAM.

The most recent Set Address command determines whether the CGRAM or DDRAM is to be read.

The Read Data instruction gates the content of the data register (DR) to the bus while E = HIGH. After E goes LOW again, internal operation increments (or decrements) the AC and stores RAM data corresponding to the new AC into the DR.

Remark: the only three instructions that update the data register (DR) are:

- Set CGRAM Address
- Set DDRAM Address
- Read Data from CGRAM or DDRAM.

Other instructions (e.g. Write Data, Cursor/Display shift, Clear Display, Return Home) will not modify the data register content.

INTERFACE TO MPU (PARALLEL INTERFACE)

The PCF2116 can send data in either two 4-bit operations or one 8-bit operation and can thus interface to 4-bit or 8-bit microcontrollers.

In 8-bit mode data is transferred as 8-bit bytes using the 8 data lines DB0 to DB7. Three further control lines E, RS, and R/\overline{W} are required.

In 4-bit mode data is transferred in two cycles of 4-bits each. The higher order bits (corresponding to DB4 to DB7 in 8-bit mode) are sent in the first cycle and the lower order bits (DB0 to DB3 in 8-bit mode) in the second. Data transfer is complete after two 4-bit data transfers. Note that two cycles are also required for the busy flag check. 4-bit operation is selected by instruction. See Figs 18, 19 and 20 for examples of bus protocol.

In 4-bit mode pins DB3 to DB0 must be left open-circuit. They are pulled up to V_{DD} internally.

INTERFACE TO MPU: I²C-BUS INTERFACE

Characteristics of the I²C-bus

The I²C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

PCF2116 family (PCF2114X; PCF2116X)

Bit transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

Start and stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).

System configuration

A device generating a message is a 'transmitter', a device receiving a message is the 'receiver'. The device that controls the message is the 'master' and the devices which are controlled by the master are the 'slaves'.

Acknowledge

The number of data bytes transferred between the start and stop conditions from transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

I²C-bus protocol

Before any data is transmitted on the l^2 C-bus, the device which should respond is addressed first. The addressing is always carried out with the first byte transmitted after the start procedure. The l^2 C-bus configuration for the different PCF2116 READ and WRITE cycles is shown in Figs 25 to 27.

PCF2116 family

(PCF2114X; PCF2116X)

October 1994

PCF2116 family (PCF2114X; PCF2116X)

acknowledgement from PCF2116 acknowledgement from master no acknowledgement from master Τ Т Τ S A 0 SLAVE ADDRESS s 1 А DATA DATA 1 Ρ A Ĺ last byte n bytes R/W update MGA810 - 1 data pointer Fig.27 Master reads slave immediately after first byte; READ mode (RS previously defined).

PCF2116 family (PCF2114X; PCF2116X)

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	supply voltage	-0.5	+8	V
V _{LCD}	LCD supply voltage	V _{DD} – 11	V _{DD}	V
VI	input voltage OSC, V_0 , RS, R/\overline{W} , E and DB0 to DB7	V _{SS} – 0.5	V _{DD} + 0.5	V
Vo	output voltage R1 to R32, C1 to C60 and V_{LCD}	V _{LCD} – 0.5	V _{DD} + 0.5	V
li .	DC input current	-10	+10	mA
Io	DC output current	-10	+10	mA
I _{DD} , I _{SS} , I _{LCD}	V _{DD} , V _{SS} or V _{LCD} current	-50	+50	mA
P _{tot}	total power dissipation	-	400	mW
Po	power dissipation per output	_	100	mW
T _{stg}	storage temperature	-65	+150	°C

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").

PCF2116 family (PCF2114X; PCF2116X)

DC CHARACTERISTICS

 V_{DD} = 2.5 to 6 V; V_{SS} = 0 V; V_{LCD} = V_{DD} – 3.5 to V_{DD} – 9 V; T_{amb} = –40 °C to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies	-			1	1	1
V _{DD}	supply voltage		2.5	_	6	V
V _{LCD}	LCD supply voltage		V _{DD} – 9	_	V _{DD} - 3.5	V
I _{DD}	supply current external V _{LCD}	note 1				
I _{DD1}	supply current 1		_	200	500	μA
I _{DD2}	supply current 2	$V_{DD} = 5 V; V_{OP} = 9 V;$ $f_{osc} = 150 \text{ kHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	-	200	300	μA
I _{DD3}	supply current 3	$V_{DD} = 3 V; V_{OP} = 5 V;$ $f_{osc} = 150 \text{ kHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	-	150	200	μA
I _{DD}	supply current internal V _{LCD}	notes 1, 2 and 8				
I _{DD4}	supply current 4		-	700	1100	μA
I _{DD5}	supply current 5	$V_{DD} = 5 V; V_{OP} = 9 V;$ $f_{osc} = 150 \text{ kHz};$ $T_{amb} = 25 \text{ °C}$	_	600	900	μA
I _{DD6}	supply current 6	$V_{DD} = 3 V; V_{OP} = 5 V;$ $f_{osc} = 150 \text{ kHz};$ $T_{amb} = 25 \text{ °C}$	_	500	800	μA
I _{LCD}	V _{LCD} input current	notes 1 and 7	-	50	100	μA
V _{POR}	power-on reset voltage level	note 3	_	1.3	1.8	V
Logic	·					
V _{IL1}	LOW level input voltage E, RS, R/W, DB0 to DB7 and SA0		V _{SS}	-	0.3V _{DD}	V
V _{IH1}	HIGH level input voltage E, RS, R/W, DB0 to DB7 and SA0		0.7V _{DD}	-	V _{DD}	V
VoscL	LOW level input voltage OSC		V _{SS}	-	V _{DD} – 1.5	V
V _{oscH}	HIGH level input voltage OSC		V _{DD} - 0.1	-	V _{DD}	V
V _{V0L}	LOW level input voltage V ₀		V _{SS}	-	$V_{DD} - 0.5$	V
V _{V0H}	HIGH level input voltage V ₀		$V_{DD} - 0.05$	_	V _{DD}	V
I _{pu}	pull-up current at DB0 to DB7	$V_{I} = V_{SS}$	0.04	0.15	1.00	μA
I _{OL1}	LOW level output current DB0 to DB7	V _{OL} = 0.4 V; V _{DD} = 5 V	1.6	-	-	mA
I _{OH}	HIGH level output current DB0 to DB7	V _{OH} = 4 V; V _{DD} = 5 V	-1.0	_	-	mA
I _{L1}	leakage current OSC, V_0 , E, RS, R/W, DB0 to DB7 and SA0	$V_{I} = V_{DD} \text{ or } V_{SS}$	-1	-	+1	μA

PCF2116 family (PCF2114X; PCF2116X)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
l ² C-bus	1			•		
SDA, SCL						
V _{IL2}	LOW level input voltage	note 4	V _{SS}	_	0.3V _{DD}	V
V _{IH2}	HIGH level input voltage	note 4	0.7V _{DD}	_	V _{DD}	V
I _{L2}	leakage current	$V_{I} = V_{DD} \text{ or } V_{SS}$	-1	_	+1	μA
Cl	input capacitance	note 5	_	_	7	pF
I _{OL2}	LOW level output current (SDA)	V _{OL} = 0.4 V; V _{DD} = 5 V	3	-	-	mA
LCD outputs	5		•			•
R _{ROW}	row output resistance R1 to R32	note 6	_	1.5	3	kΩ
R _{COL}	column output resistance C1 to C60	note 6	-	3	6	kΩ
V _{tol1}	bias tolerance R1 to R32 and C1 to C60	note 7	_	±20	±130	mV
V _{tol2}	V _{LCD} tolerance	note 2	-	±40	±300	mV

Notes

 LCD outputs are open-circuit; inputs at V_{DD} or V_{SS}; V₀ = V_{DD}; bus inactive; internal or external clock with duty cycle 50% (I_{DD1} only).

- 2. LCD outputs are open-circuit; HV generator is on; load current at $V_{LCD} = 20 \ \mu$ A.
- 3. Resets all logic when $V_{DD} < V_{POR}$.
- 4. When the voltages are above or below the supply voltages V_{DD} or V_{SS}, an input current may flow; this current must not exceed ±0.5 mA.
- 5. Tested on sample basis.
- 6. Resistance of output terminals (R1 to R32 and C1 to C60) with load current = 150 μ A; V_{OP} = V_{DD} V_{LCD} = 9 V; outputs measured one at a time; (external V_{LCD}).
- 7. LCD outputs open-circuit; external V_{LCD} .
- 8. Maximum value occurs at 85 $^\circ\text{C}.$
PCF2116 family (PCF2114X; PCF2116X)

AC CHARACTERISTICS

 V_{DD} = 2.5 to 6.0 V; V_{SS} = 0 V; V_{LCD} = V_{DD} – 3.5 V to V_{DD} – 9 V; T_{amb} = –40 °C to + 85 °C; unless otherwise specified.

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
f _{FR}	LCD frame frequency (internal clock); note 1	40	65	100	Hz
f _{osc}	c external clock frequency		150	225	kHz
Bus timing ch	aracteristics: Parallel Interface; notes 1 and 2			ī	
WRITE OPERATIO	ON (WRITING DATA FROM MPU TO PCF2116)				
T _{cy}	enable cycle time	500	_	_	ns
PW _{EH}	enable pulse width	220	_	_	ns
t _{ASU}	address set-up time	50	_	_	ns
t _{AH}	address hold time	25	_	_	ns
t _{DSW}	data set-up time	60	_	_	ns
t _{HD}	data hold time	25	_	_	ns
READ OPERATIO	N (READING DATA FROM PCF2116 TO MPU)				
T _{cy}	enable cycle time	500	_	_	ns
PW _{EH}	enable pulse width	220	_	_	ns
t _{ASU}	address set-up time	50	_	_	ns
t _{AH}	address hold time	25	_	_	ns
t _{DHD}	data delay time	_	_	150	ns
t _{HD}	data hold time	20	_	100	ns
Timing charac	teristics: I ² C-bus interface; note 2			-	
f _{SCL}	SCL clock frequency	_	_	100	kHz
t _{SW}	tolerable spike width on bus	_	_	100	ns
t _{BUF}	bus free time	4.7	_	_	μs
t _{SU;STA}	set-up time for a repeated START condition	4.7	_	_	μs
t _{HD;STA}	start condition hold time	4	_	_	μs
t _{LOW}	SCL LOW time	4.7	_	_	μs
t _{HIGH}	SCL HIGH time	4	_	_	μs
t _r	SCL and SDA rise time	_	_	1	μs
t _f	SCL and SDA fall time	_	_	0.3	μs
t _{SU;DAT}	data set-up time	250	_	_	ns
t _{HD;DAT}	data hold time	0	_	_	ns
t _{SU;STO}	set-up time for STOP condition	4	_	_	μs

Notes

1. $V_{DD} = 5.0 V.$

2. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to V_{IL} and V_{IH} with an input voltage swing of V_{SS} to V_{DD} .

PCF2116 family (PCF2114X; PCF2116X)

TIMING CHARACTERISTICS

PCF2116 family (PCF2114X; PCF2116X)

APPLICATION INFORMATION

PCF2116 family

(PCF2114X; PCF2116X)

LCD controller/drivers

8-bit operation, 1-line display using internal reset

Table 6 shows an example of a 1-line display in 8-bit operation. The PCF2116 functions must be set by the function set instruction prior to display. Since the display data RAM can store data for 80 characters, the RAM can be used for advertising displays when combined with display shift operation. Since the display shift operation changes display position only and DDRAM contents remain unchanged, display data entered first can be displayed when the Return Home operation is performed.

4-bit operation, 1-line display using internal reset

The program must set functions prior to 4-bit operation. Table 5 shows an example. When power is turned on, 8-bit operation is automatically selected and the PCF2116 attempts to perform the first write as an 8-bit operation. Since nothing is connected to DB0 to DB3, a rewrite is then required. However, since one operation is completed in two accesses of 4-bit operation, a rewrite is required to set the functions (see Table 5 step 3).

Thus, DB4 to DB7 of the function set are written twice.

8-bit operation, 2-line display

For a 2-line display, the cursor automatically moves from the first to the second line after the 40th digit of the first line has been written. Thus, if there are only 8 characters in the first line, the DDRAM address must be set after the eighth character is completed (see Table 7). Note that both lines of the display are always shifted together; data does not shift from one line to the other.

I²C operation, 1-line display

A control byte is required with most commands (see Table 8).

Initializing by instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, the PCF2116 must be initialized by instruction. Tables 9 and 10 show how this may be performed for 8-bit and 4-bit operation.

		-			-			
STEP			INSTR	UCTIO	N		DISPLAY	OPERATION
1		er supply ternal re	•		s initiali	zed by		Initialized. No display appears.
2	Funct	tion set						
	RS	R/W	DB7	DB6	DB5	DB4		Sets to 4-bit operation. In this instance operation
	0	0	0	0	1	0		is handled as 8-bits by initialization and only this instruction completes with one write.
3	Funct	tion set						
	0	0	0	0	1	0		Sets to 4-bit operation, selects 1-line display and
	0	0	0	0	0	0		$V_{LCD} = V_0$. 4-bit operation starts from this point and resetting is needed.
4	Displa	ay on/off	f control					
	0	0	0	0	0	0	_	Turns on display and cursor. Entire display is
	0	0	1	1	1	0		blank after initialization.
5	Entry	mode s	et					
	0	0	0	0	0	0	_	Sets mode to increment the address by 1 and to
	0	0	0	1	1	0		shift the cursor to the right at the time of write to the DD/CGRAM. Display is not shifted.
6	Write	data to	CGRAN	//DDRA	M			
	1	0	0	1	0	1	P_	Writes 'P'. The DDRAM has already been
	1	0	0	0	0	0		selected by initialization at power-on. The cursor is incremented by 1 and shifted to the right.

 Table 5
 4-bit operation, 1-line display example; using internal reset.

Table 6	8-bit operation, 1-line display example; using internal reset (character set 'A').	aracter set 'A').	
STEP	INSTRUCTION	DISPLAY	OPERATION
-	Power supply on (PCF2116 is initialized by the internal reset function).		Initialized. No display appears.
7	Function set		
	RS $R\overline{W}$ DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0		Sets to 8-bit operation, selects 1-line display and
	0 0 0 1 1 0 0 0 0		$V_{LCD} = V_0.$
ę	Display mode on/off control		
	0 0 0 0 0 1 1 1 0	I	Turns on display and cursor. Entire display is blank after initialization.
4	Entry mode set		
	0 0 0 0 0 0 1 1 0	I	Sets mode to increment the address by 1 and to shift the
			cursor to the right at the time of the write to the DD/CGRAM. Display is not shifted.
2	Write data to CGRAM/DDRAM		
	1 0 0 1 0 1 0 0 0 0	٩	Writes 'P'. The DDRAM has already been selected by
			initialization at power-on. The cursor is incremented by 1 and shifted to the right.
9	Write data to CGRAM/DDRAM		
	1 0 0 1 0 0 1 0 0 0	PH_	Writes 'H'.
7		_	
		_	
		_	
ω	Write data to CGRAM/DDRAM		
	1 0 0 1 0 1 0 0 1 1		Writes 'S'.
6	Entry mode set		
	0 0 0 0 0 0 0 1 1 1		Sets mode for display shift at the time of write.
10	Write data to CGRAM/DDRAM		
	1 0 0 1 0 0 0 0		Writes space.
1	Write data to CGRAM/DDRAM		
	1 0 0 1 0 0 1 1 0 1	ILIPS M	Writes 'M'.

October 1994

LCD controller/drivers

Philips Semiconductors

STEP	INSTRUCTION	DISPLAY	OPERATION
12			
		_	
13	Write data to CGRAM/DDRAM		
	1 0 0 1 0 0 1 1 1 1	MICROKO	Writes 'O'.
14	Cursor or display shift		
	0 0 0 0 1 0 0 0 0	MICROKO	Shifts only the cursor position to the left.
15	Cursor or display shift		
	0 0 0 0 1 0 0 0 0	MICROKO	Shifts only the cursor position to the left.
16	Write data to CGRAM/DDRAM		
	1 0 0 1 0 0 0 0 1 1	ICROC <u>O</u>	Writes 'C' correction. The display moves to the left.
17	Cursor or display shift		
	0 0 0 0 0 1 1 1 0 0	MICROC <u>O</u>	Shifts the display and cursor to the right.
18	Cursor or display shift		
	0 0 0 0 1 0 1 0 0	MICROCO	Shifts only the cursor to the right.
19	Write data to CGRAM/DDRAM		
	1 0 0 1 0 0 1 1 0 1	ICROCOM	Writes 'M'.
20			
		_	
		_	
21	Return Home		
	0 0 0 0 0 0 0 1 0	<u>P</u> HILIPS M	Returns both display and cursor to the original position (address 0).
		-	

Table 7	8-bit operation, 2-line display example; using internal reset.		
STEP	INSTRUCTION	DISPLAY	OPERATION
~	Power supply on (PCF2116 is initialized by the internal reset function).		Initialized. No display appears.
~	Function set		Sets to 8-bit operation, selects 2-line display and voltage generator off.
	S R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1		
ო	Display on/off control	1	Turns on display and cursor. Entire display is blank after initialization.
	0 0 0 0 0 0 1 1 1 0		
4	Entry mode set		Sets mode to increment the address by 1 and to shift the cursor to the right at the time of write to the CG/DDRAM.
	0 0 0 0 0 0 1 1 0		Display is not shifted.
ъ	Write data to CGRAM/DDRAM		Writes 'P'. The DDRAM has already been selected by
	1 0 0 0 0 0 0 0 0 0 0		and shifted to the right.
9		_	
7	Write data to CGRAM/DDRAM	-	Writes 'S'.
	1 0 0 1 0 1 0 0 1 1		
ω	Set DDRAM address	PHILIPS	Sets DDRAM address to position the cursor at the head of the 2nd line.
თ	Write data to CGRAM/ DDRAM	PHILIPS	Writes 'M'.
		Σ	
10			
		_	

PCF2116 family (PCF2114X; PCF2116X)

PCF2116 family (PCF2114X; PCF2116X)

11Write data to CGRAM/ DDRAMHILIPSWrites 'O'.1010111112Write data to CGRAM/ DDRAM \mathbf{N} $\mathbf{PHILIPS}$ Sets mode for display shift at the time of Write data to CGRAM/ DDRAM13Write data to CGRAM/ DDRAM \mathbf{N} $\mathbf{PHILIPS}$ Sets mode for display shift at the time of Mrite data to CGRAM/ DDRAM13Write data to CGRAM/ DDRAM \mathbf{N} $\mathbf{PHILIPS}$ Sets mode for display shift at the time of Mrite data to CGRAM/ DDRAM13Write data to CGRAM/ DDRAM \mathbf{N} \mathbf{N} \mathbf{N} 14 \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} 14 \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} 15 \mathbf{N} \mathbf{N} \mathbf{N} 16 \mathbf{N} \mathbf{N} \mathbf{N} 17 \mathbf{N} \mathbf{N} \mathbf{N} 18 \mathbf{N} \mathbf{N} \mathbf{N} 19 \mathbf{N} \mathbf{N} \mathbf{N} 11 \mathbf{N} \mathbf{N} \mathbf{N} 12 \mathbf{N} \mathbf{N} \mathbf{N} 13 \mathbf{N} \mathbf{N} \mathbf{N} 14 \mathbf{N} \mathbf{N} \mathbf{N} 15 \mathbf{N} \mathbf{N} \mathbf{N} 16 \mathbf{N} \mathbf{N} \mathbf{N} 17 \mathbf{N} \mathbf{N} \mathbf{N} 18 \mathbf{N} \mathbf{N} \mathbf{N} 19 \mathbf{N} \mathbf{N} \mathbf{N} 10 \mathbf{N} \mathbf{N} \mathbf{N} 11 \mathbf{N} \mathbf{N} \mathbf{N} 12 \mathbf{N} \mathbf{N} \mathbf	STEP	INSTRUCTION	DISPLAY	OPERATION
1 0 0 1 1 1 1 1 1 1 PHILPS Write data to CGRAM/ DDRAM Write data to CGRAM/ DDRAM PHILPS PHILPS PHILPS Write data to CGRAM/ DDRAM 0 0 0 1 1 1 PHILPS Write data to CGRAM/ DDRAM 1 1 1 1 1 1 PHILPS Write data to CGRAM/ DDRAM 1 1 1 1 1 PHILPS Write data to CGRAM/ DDRAM 1 1 0 1 1 1 PHILPS PHILPS 1 1 1 1 1 1 PHILPS Phile 1 0 1 1 0 1 1 1 Phile 1	5	Write data to CGRAM/ DDRAM		Writes 'O'.
1 0 0 1			PHILIPS	
Write data to CGRAM/ DDRAM PHILIPS 0 0 0 0 1 1 1 PHILIPS 0 0 0 0 0 1 1 1 PHILIPS Write data to CGRAM/ DDRAM 1 1 1 1 PHILIPS PHILIPS Write data to CGRAM/ DDRAM 1 1 1 0 1 1 PHILIPS 1 0 0 1 1 1 PHILIPS PHILIPS Prince 1 1 1 1 1 PHILIPS PHILIPS Peturn Home 1 1 1 1 PHILIPS PHILIPS PHILIPS 0 0 0 0 0 1 PHILIPS PHILIPS PHILIPS PHILIPS		0 1 0 0 1	MICROCO	
0 0 0 0 0 1 1 1 MICROCO Write data to CGRAM/ DDRAM 1 0 0 1	12	Write data to CGRAM/ DDRAM	SHILIPS	Sets mode for display shift at the time of write.
Write data to CGRAM/ DDRAM HILIPS 1 0 0 1 0 1 1 0 0 1 0 1 1 Return Home 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0	MICROCO	
1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 Return Home 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 Return Home 1 <t< th=""><td>13</td><td>Write data to CGRAM/ DDRAM</td><th>HILIPS</th><td>Writes 'M'. Display is shifted to the left. The first and second lines shift together.</td></t<>	13	Write data to CGRAM/ DDRAM	HILIPS	Writes 'M'. Display is shifted to the left. The first and second lines shift together.
Return Home PHILIPS 0 0 0 0 0 MICROCOM		0 1 0 0 1	ICROCOM	
Return Home PHILIPS 0 0 0 0 0 MICROCOM	14			
Return Home PHILIPS 0 0 0 0 0 MICROCOM			_	
0 0 0 0 0 0 0 1 0	15	Return Home	SHILIPS	Returns both display and cursor to the original position (address 0).
		0 0 0 0 0 0 0 1	MICROCOM	

October 1994

Product specification

		, n	
STEP	I ² C BYTE	DISPLAY	OPERATION
-	I ² C start		Initialized. No display appears.
2	Slave address for write		
	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W Ack		During the acknowledge cycle SDA will be pulled-down by the
	0 1 1 1 0 1 0 0 1		PCF2116.
ς	Send a control byte for function set		
	Co RS R/W Ack		Control byte sets RS and R/\overline{W} for following data bytes.
	0 0 0 × × × × × 1		
4	Function set		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ack		Selects 1-line display and $V_{LCD} = V_0$; SCL pulse during
	0 0 1 X 0 0 0 0 1		acknowledge cycle starts execution of instruction.
5	Display on/off control		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ack		Turns on display and cursor. Entire display shows character
	0 0 0 1 1 1 0 1	I	hex 20 (blank in ASCII-like character sets).
9	Entry mode set		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ack		Sets mode to increment the address by 1 and to shift the cursor
	0 0 0 1 1 0 1	I	to the right at the time of write to the DDRAM or CGRAM. Display is not shifted.
7	I ² C start		
		I	For writing data to DDRAM, RS must be set to 1. Therefore a control byte is needed.
ω	Slave address for write		
	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W Ack		
	0 1 1 1 0 1 0 0 1	I	
6	Send a control byte for write data		
	Co RS R/W Ack		
	0 1 0 X X X X X 1	I	

PCF2116 family (PCF2114X; PCF2116X)

46

Writes 'P'. The DDRAM has been selected at power-up. The cursor is incremented by 1 and shifted to the right.

٩

Ack

DB0 0

DB1 0

DB3 0

DB4

DB6 1

DB7 0

<u>_</u>

DB5 0

Write data to DDRAM

10

DB2 0

October 1994

i	I ² C BYTE	DISPLAY	OPERATION
1	Write data to DDRAM DB7 DB6 DB5 DB4 DB3 DB1 DB0 Ack 0 1 0 0 1 0 1 0 1	H	Writes 'H'.
12 to 15			
16	rite data to DDRAM 37 DB6 DB5 DB4		Writes 'S'.
17	0 1 0 1 0 1 1 1 (optional I ² C stop) I ² C start + slave address for write		
	(as step 8)		
18	Control byte Co RS R/W Ack		
	1 0 0 X X X X X 1	PHILIPS	
19	Return Home		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ack		Sets DDRAM address 0 in address counter. (also returns shifted
	0 0 0 0 0 1 0 1	SdIJIH <u>a</u>	display to original position. DDRAM contents unchanged). This instruction does not update the Data Register (DR).
20	Control byte for read		
	Co RS R/W Ack		DDRAM content will be read from following instructions. The
	0 1 1 X X X X X 1		R/W has to be set to 1 while still in 1^{2} C-write mode.
21	I ² C start		
22	Slave address for read		
	SA6 SA5 SA4 SA3 SA2 SA1 SA0 R/W Ack		During the acknowledge cycle the content of the DR is loaded
	0 1 1 1 0 1 0 1 1	P<u>H</u>ILIPS	into the internal I ² C interface to be shifted out. In the previous instruction neither a Set Address nor a Read Data has been performed. Therefore the content of the DR was unknown.
23	Read data: $8 \times SCL$ + master acknowledge; note 2		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ack		$8 \times SCL$; content loaded into interface during previous
	0	PHILIPS	acknowledge cycle is shifted out over SDA. MSB is DB7. During master acknowledge content of DDRAM address 01 is loaded into the I ² C interface

LCD controller/drivers

Philips Semiconductors

STEP	I ² C BYTE	DISPLAY	OPERATION
24	Read data: $8 \times SCL$ + master acknowledge; note 2		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ack		$8 \times SCL$; code of letter 'H' is read first. During master
	0 1 0 0 1 0 0 0 0	PHILIPS	acknowledge code of 'l' is loaded into the 1^2 C interface.
25	Read data: $8 \times SCL$ + no master acknowledge; note 2		
	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Ack		No master acknowledge; After the content of the I ² C interface
	0 1 0 0 1 0 0 1 1	PHILIPS	register is shifted out no internal action is performed. No new
			data is loaded to the interface register, Data Register (DR) is not
			updated, Address Counter (AC) is not incremented and cursor is
			not shifted.
26	I ² C stop	PHILIPS	
Notes			

Philips Semiconductors

PCF2116 family (PCF2114X; PCF2116X)

SDA is left at high-impedance by the microcontroller during the READ acknowledge.

X = don't care.

ц Сі

 Table 9
 Initialization by instruction, 8-bit interface (note 1).

Description BF cannot be checked before this instruction. Erunction set (interface is 8-bits long). Function set (interface is 8-bits long). Er cannot be checked before this instruction. Er cannot be checked before this instruction. Erunction set (interface is 8-bits long). Er cannot be checked before this instruction. Erunction set (interface is 8-bits long). BF cannot be checked before this instruction. Erunction set (interface is 8-bits long). BF cannot be checked after the following instructions. When BF is not checked, the waiting time between instructions is the specified instruction time (see Table 3). Function set (interface is 8-bits long). Specify the number of display lines and voltage generator characteristic. Display off.	Entry mode set.
	ν
	9
nterrace (note 1). state not state	-
Digy instruction, 8-bit internation STEP STEP power-on or unknown state DB6 DB5 DB4 Mait 2 ms wait 2 ms DB6 DB5 DB4 D O O O O O O O O O O O O O O	0 0 nitialization ends
ST ST ST <	0 itializat
DB6 DB6 0 0 0 0 0 0 0 0 0 0 0 0	0
Initialization by instruction, 8-bit instructin, 8-bit instruction, 8-bit instruction, 8-bit instruction	0
	0
able y able y	0

LCD controller/drivers

Philips Semiconductors

Note 1. X = don't care.

LCD controller/drivers

PCF2116 family (PCF2114X; PCF2116X)

Table 11 Bonding pad locations (dimensions in μ m). All x/y coordinates are referenced to centre of chip, see Fig.40.

SYMBOL	PAD	x	у
OSC	1	-2445	-3300
DB1	2	-2211	-3300
V _{DD2}	3	-2034	-3300
DB0	4	-1806	-3300
V _{DD1}	5	-1627	-3300
SA0	6	-1437	-3300
E	7	-1245	-3300
V _{SS1}	8	-1056	-3300
R/W	9	-867	-3300
T1	10	-672	-3300
V _{SS2}	11	-486	-3300
RS	12	-297	-3300
R9	13	77	-3300
R10	14	247	-3300
R11	15	417	-3300
R12	16	587	-3300
R13	17	757	-3300
R14	18	927	-3300
R15	19	1097	-3300
R16	20	1267	-3300
R25	21	1436	-3300
R26	22	1606	-3300
R27	23	1776	-3300
R28	24	1946	-3300
R29	25	2116	-3300
R30	26	2286	-3300
R31	27	2456	-3300
R32	28	2626	-3013
C60	29	2626	-2760
C59	30	2626	-2590
C58	31	2626	-2420
C57	32	2626	-2250
C56	33	2626	-2080
C55	34	2626	-1910
C54	35	2626	-1740
C53	36	2626	-1570
C52	37	2626	-1400
C51	38	2626	-1230

SYMBOL	PAD	x	У
C50	39	2626	-1060
C49	40	2626	-890
C48	41	2626	-720
C47	42	2626	-550
C46	43	2626	-380
C45	44	2626	582
C44	45	2626	752
C43	46	2626	922
C42	47	2626	1092
C41	48	2626	1262
C40	49	2626	1432
C39	50	2626	1602
C38	51	2626	1772
C37	52	2626	1942
C36	53	2626	2112
C35	54	2626	2282
C34	55	2626	2452
C33	56	2626	2622
C32	57	2626	2792
C31	58	2626	2962
C30	59	2626	3132
C29	60	2339	3302
C28	61	2169	3302
C27	62	1 999	3302
C26	63	1829	3302
C25	64	1659	3302
C24	65	1489	3302
C23	66	1319	3302
C22	67	1149	3302
C21	68	979	3302
C20	69	809	3302
C19	70	639	3302
C18	71	469	3302
C17	72	299	3302
C16	73	129	3302
C15	74	-245	3302
C14	75	-415	3302
C13	76	-585	3302

SYMBOL	PAD	x	У
C12	77	-755	3302
C11	78	-925	3302
C10	79	-1095	3302
C9	80	-1265	3302
C8	81	-1435	3302
C7	82	-1605	3302
C6	83	-1775	3302
C5	84	-1945	3302
C4	85	-2115	3302
C3	86	-2285	3302
C2	87	-2455	3302
C1	88	-2625	3015
R24	89	-2625	2846
R23	90	-2625	2676
R22	91	-2625	2506
R21	92	-2625	2336
R20	93	-2625	2166
R19	94	-2625	1996
R18	95	-2625	1826
R17	96	-2625	1656
R8	97	-2625	1487
R7	98	-2625	1317
R6	99	-2625	1147
R5	100	-2625	977
R4	101	-2625	807
R3	102	-2625	637
R2	103	-2625	467
R1	104	-2625	297
DB7	105	-2625	-290
SCL	106	-2625	-479
DB6	107	-2625	-716
SDA	108	-2625	-976
DB5	109	-2625	-1202
V ₀	110	-2625	-1388
V _{LCD1}	111	-2625	-1580
DB4	112	-2625	-1808
V _{LCD2}	113	-2625	-1985
DB3	114	-2625	-2213
V _{LCD3}	115	-2625	-2390
DB2	116	-2625	-2621

PCF2116 family (PCF2114X; PCF2116X)

PACKAGE OUTLINE

SOLDERING

Quad flat-packs

BY WAVE

During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6s. Typical dwell time is 4 s at 250 °C.

A modified wave soldering technique is recommended using two solder waves (dual-wave), in which, in a turbulent wave with high-upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.

BY SOLDER PASTE REFLOW

Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be

PCF2116 family (PCF2114X; PCF2116X)

applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.

REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL)

Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)

For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.

PCF2116 family (PCF2114X; PCF2116X)

DEFINITIONS

Data sheet status			
Objective specification	This data sheet contains target or goal specifications for product development.		
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.			
Application information			
Where application information is given, it is advisory and does not form part of the specification.			

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

PCF2116 family (PCF2114X; PCF2116X)

NOTES

PCF2116 family (PCF2114X; PCF2116X)

NOTES

Philips Semiconductors – a worldwide company

Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367 Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466 Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211 Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788 399 Brazil: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2333, Fax. (011)829-1849 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS: Tel. (800) 234-7381, Fax. (708) 296-8556 Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730 Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549 Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (9)0-50261, Fax. (9)0-520971 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427 Germany: P.O. Box 10 63 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213. Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240 Hong Kong: PHILIPS HONG KONG Ltd., 6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729 India: Philips INDIA Ltd, Shivsagar Estate, A Block , Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722 Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)640 000, Fax. (01)640 200 Italy: PHILIPS SEMICONDUCTORS S.r.I. Piazza IV Novembre 3, 20124 MILANO Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03)3740 0580 Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556 Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB Tel. (040)783749, Fax. (040)788399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax. (022)74 8341

Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546. Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474 Portugal: PHILIPS PORTUGUESA, S.A. Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366. Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500 South Africa: S.A. PHILIPS Pty Ltd. 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494. **Spain:** Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)301 42 43 Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 77 30 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382. Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319. Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0212)279 2770, Fax. (0212)269 3094 United Kingdom: Philips Semiconductors LTD. 276 Bath road, Hayes, MIDDLESEX UB3 5BX, Tel. (081)73050000, Fax. (081)7548421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556 Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601

For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BE-p, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825

SCD35 © Philips Electronics N.V. 1994

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

493061/1500/02/pp64 Document order number: Date of release: October 1994 9397 740 30011

Philips Semiconductors

