DLD601/D Rev. 0, Jan-2000

One-Gate Logic

ON Semiconductor

Formerly a Division of Motorola

One–Gate Logic

DLD601/D Rev. 0, Jan-2000

ON Semiconductor Formerly a Division of Motorola

© SCILLC, 2000 "All Rights Reserved"

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

Table of Contents

An Introduction to O		Page
	ne Gate Logic	
MC74VHC1G00.	2–Input NAND Gate	-
MC74VHC1G00, MC74VHC1G01.	2–Input NAND Gate with Open Drain Output	
MC74VHC1G02.	2–Input NOR Gate	
MC74VHC1G02, MC74VHC1G03.	2–Input NOR Gate with Open Drain Output	
MC74VHC1G04,	Inverter	
MC74VHC1G05.	Inverter with Open Drain Output	
MC74VHC1G07.	Noninverting Buffer with Open Drain Output	
MC74VHC1G08.	2–Input AND Gate	
MC74VHC1G09.	2–Input AND Gate with Open Drain Output	
MC74VHC1G132.	2–Input NAND Schmitt–Trigger	
MC74VHC1G135.	2–Input NAND Schmitt–Trigger with Open Drain Output	
MC74VHC1G14.	Schmitt-Trigger Inverter	
MC74VHC1G32.	2–Input OR Gate	
MC74VHC1G66.	Analog Switch	
MC74VHC1G86.	2–Input Exclusive OR Gate	
MC74VHC1GT00.	2-Input NAND Gate / CMOS Logic Level Shifter	
MC74VHC1GT02.	2-Input NOR Gate / CMOS Logic Level Shifter	
MC74VHC1GT04,	Inverting Buffer / CMOS Logic Level Shifter	
MC74VHC1GT14,	Schmitt–Trigger Inverter / CMOS Logic Level Shifter	
MC74VHC1GT50,		
MC74VHC1GT66,	Analog Switch	
MC74VHC1GT86,	2-Input Exclusive OR Gate / CMOS Logic Level Shifter	96
	Unbuffered Inverter	
Application Notes		. 104
	ode & Traceability Marking	
	e & Reel and Package Specifications	
Tape & Reel Inform	ation	119
Case Outlines		122
Sales Office List		123
Document Definition	ns	124

An Introduction to One Gate Logic

Initially, One–Gate devices were popularized in Japan for use in hand held applications. They were originally designed to "fix" small, simple problems, either with the logic, for adding buffering between circuits, or to add signal drive. System designers outside of Japan never fully appreciated the value of these tiny devices, and the role they could play in reducing board area by applying logic signals, just where it was needed.

Although several package variations exist, today, the most current One Gate devices are packaged in the industry standard SC–88A/SOT353 package. This package measures approximately 2.0 X 2.1 mm, or less than 4.5 mm². By comparison, a standard 14 lead SOIC is over 50 mm². 4 one–gate devices take up about 1/3 the area of a conventional SOIC package. Even more importantly, because of the small package size, one–gate functions allow the designer significant flexibility in signal line routing.

In general, the simpler the board layout, the more likely the circuit will function properly the first time. If a designer is using an ordinary four-gate, TSSOP, logic IC and needs all four gates he must first find the board space to place a 14-pin package (32 mm²). He will then begin the task of routing to and from the device. In the event that the inputs are coming from different places around the board, the routing becomes difficult. In addition, the longer the signal lines, the higher the chances for EMI type of problems. In cases where logic functions are required in 2 or 3 different locations, the routing issue becomes even more complex. In a second case, a standard logic device has 4 gates, but the designer needs 2 or more different logic forms, i.e. AND, NAND, XOR etc. Of course the designer could use several gates to create the correct logic, but that would defeat the purpose of a multi-gate logic device. With One Gates, the designer can have a 2-Input NAND gate in one corner and a 2-Input XOR in another corner. The inputs can be close to the source, so routing is simplified.

One–Gate logic products can be derived from almost any standard multi–gate family of products. ON Semiconductor, has selected the 74VHC CMOS logic family as the preferred technology for One Gate. VHC has extremely desirable

Simplified Routing

characteristics to make it ideal for One Gates. It is usable over a wide range of voltages, with fully guaranteed operation from 2.0 to 6.0 volts. Like other CMOS logic families, VHC slows down somewhat at the lower voltages, but non the less, still remains one of the faster logic families. VHC is over–voltage tolerant (OVT), at its inputs, which permits the designer to operate the device at a low voltage, say 2.5 volts, but yet interface with 5.0 volt logic. Typical propagation delays of less than 5.0 nsecs, along with extremely low quiescent power, make the VHC technology very attractive for many applications.

Open drain: In addition to the offering of traditional, standard logic functions, On Semiconductor will be offering a broad portfolio of open drain devices, allowing logic level translation to or from almost any logic level. The designer only needs to operate the One Gate from the input Vcc voltage to be translated, and connect the output to a pull-up resistor to the output voltage. The output will be translated to the new voltage. This voltage may be any level between 1.5 and 7.0 volts. Complex logic may also be created using a few open drain one gates. Two or more devices may be wire OR'd by simply connecting their O.D. outputs together, creating more complex logic, without taking up much space. Complex logic can be created very simply and at very low power consumption. This can be especially useful when trying to use a standard circuit in a special application. Since the one gate devices may each be different, the possibilities are nearly limitless.

Conclusion: One–gate logic devices offer the designer several new options that allow for cleaner simpler board layout, interfacing different voltage levels, and unique combinational logic forms taking up almost no board space and drawing very small amounts of power. ON Semiconductor has a wide offering of unique One–gate logic devices, with more than 20 unique devices being offered in the early part of the year 2000. All the devices are available in the industry standard SC–88A/SOT353 package. Most device types are available as both Standard CMOS level or TTL compatible input, many with Open Drain options, and all offering over–voltage tolerance (OVT) at the input.

Data Sheets

2-Input NAND Gate

The MC74VHC1G00 is an advanced high speed CMOS 2–input NAND gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1G00 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1G00 to be used to interface 5V circuits to 3V circuits.

- High Speed: $tp_D = 3.0ns$ (Typ) at $V_{CC} = 5V$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT						
1	IN B					
2	IN A					
3	GND					
4	OUT T					
5	VCC					

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
Α	В	Ϋ́
L	L	Н
L	н	н
н	L	н
Н	Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	V _{IN}	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	lik	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	Іок	+20	mA
DC Output Current, per Pin	lout	+25	mA
DC Supply Current, V_{CC} and GND	Icc	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	TL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC–88A Package: –3 mW/°C from 65° to 125°C

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	2.0	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	VOUT	0.0	VCC	V
Operating Temperature Range	T _A	-55	+85	°C
Input Rise and Fall Time V_{CC} = 3.3V ± 0.3V V_{CC} = 5.0V ± 0.5V	t _r ,t _f	0 0	100 20	ns/V

			Vcc	٦ I	A = 25°	C	T _A ≤	85°C	TA ≤ <i>'</i>	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
VOH	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
VOL	Maximum Low–Level Output Voltage VIN = VIH or VIL	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu \text{A}$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
IIN	Maximum Input Leakage Current	V _{IN} = 5.5V or GND	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				Т	A = 25°	C	T _A ≤	85°C	T _A ≤	125°C	
Symbol	Parameter	Test Condi	itions	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , Maximum Propogation t _{PHL} Delay,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.5 5.6	7.9 11.4		9.5 13.0		11.0 15.5	ns	
	Input A or B to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.0 3.8	5.5 7.5		6.5 8.5		8.0 10.0	
C _{IN}	Maximum Input Capacitance				5.5	10		10		10	pF
						Ту	pical @	25°C, V	CC = 5.0	0V	
Coo	Power Dissipation Capa	citance (Note 1.)						10			nF

 Image: CPD
 Power Dissipation Capacitance (Note 1.)
 Image: rypical @ 25°C, V_{CC} = 5.0V
 pF

 1.
 CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC}(OPR) = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

DEVICE ORDERING INFORMATION

	Device Nomenclature							
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G00DFT1	MC	74	VHC1G	00	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

Product Preview 2-Input NAND Gate with Open Drain Output

The MC74VHC1G01 is an advanced high speed CMOS 2–input NAND gate with an open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including an open drain output which provides the ability to set output switching level. This allows the MC74VHC1G01 to be used to interface 5V circuits to circuits of any voltage between V_{CC} and 7V using an external resistor and power supply.

The MC74VHC1G01 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage.

- High Speed: $t_{PD} = 3.7 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Internal Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT						
1	IN B					
2	IN A					
3	GND					
4	OUT T					
5	VCC					

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
А	В	Ϋ́
L	L	Z
L	н	Z
н	L	Z
Н	Н	L

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage	Vout	-0.5 to 7.0	V
Input Diode Current	Iк	-20	mA
Output Diode Current (V _{OUT} < GND; V _{OUT} > V _{CC})	lок	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V _{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

Character	Symbol	Min	Max	Unit	
DC Supply Voltage		Vcc	2.0	5.5	V
DC Input Voltage		VIN	0.0	5.5	V
DC Output Voltage	DC Output Voltage			7.0	V
Operating Temperature Range		Т _А	-55	+85	°C
Input Rise and Fall Time	$\begin{array}{l} V_{CC} = 3.3 V \pm 0.3 V \\ V_{CC} = 5.0 V \pm 0.5 V \end{array}$	t _r , t _f	0 0	100 20	ns/V

				1	A = 25°	0	T _A ≤	85°C	TA ≤ <i>'</i>	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
V _{OH}	Minimum High–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL I _{OH} = –50μA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
IIN	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
IOPD	Maximum Off-state Leakage Current	V _{OUT} = 5.5V	0			0.25		2.5		5.0	μA

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ ns}$)

				Ţ	T _A = 25°C		T _A ≤ 85°C		$T_{\mbox{A}} \leq 125^{\circ} \mbox{C}$		
Symbol	Parameter	Test Conditions	Í	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PZL	Maximum Output Enable Time,	$ \begin{array}{c} V_{CC} = 3.0 \pm 0.3 V & C_L \\ R_L = 1 K \Omega & C_L \end{array} $	= 15 pF = 50 pF		5.5 8.0	7.9 11.4		9.5 13.0		11.0 15.5	ns
	Input A or B to Y	$ \begin{array}{c} V_{CC} = 5.0 \pm 0.5 V & C_L \\ R_L = 1 K \Omega & C_L \end{array} $	= 15 pF = 50 pF		3.7 5.2	5.5 7.5		6.5 8.5		8.0 10.0	
^t PLZ	Maximum Output	V_{CC} = 3.0 ± 0.3V, R _L = 1KΩ, C _L	= 50 pF		8.0	11.4		13.0		15.5	ns
	Disable Time	V_{CC} = 5.0 ± 0.5V, R _L = 1KΩ, C _L	= 50 pF		5.2	7.5		8.5		10.0	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF
	Typical @ 25°C, V _{CC} = 5.0V										

CPD	Power Dissipation Capacitance (Note 1.)	

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

pF

18

Figure 2. Output Voltage Mismatch Application

*Includes all probe and jig capacitance

Figure 4. Test Circuit

Figure 3. Switching Waveforms

DEVICE ORDERING INFORMATION

	Device Nomenclature							
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G01DFT1	MC	74	VHC1G	01	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

2-Input NOR Gate

The MC74VHC1G02 is an advanced high speed CMOS 2–input NOR gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1G02 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1G02 to be used to interface 5V circuits to 3V circuits.

- High Speed: $tp_D = 3.0ns$ (Typ) at $V_{CC} = 5V$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT
1	IN B
2	IN A
3	GND
4	OUT T
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.

FUNCTION TABLE

Inp	uts	Output					
Α	В	Ϋ́					
L	L	Н					
L	Н	L					
н	L	L					
Н	Н	L					

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	IOK	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC–88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	2.0	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	VOUT	0.0	VCC	V
Operating Temperature Range	TA	-55	+85	°C
Input Rise and Fall Time $$V_{CC}$=3.3V\pm0.3V$\\ V_{CC}=5.0V\pm0.5V$$	t _r ,t _f	0 0	100 20	ns/V

			Vcc	т	A = 25°0	C	T _A ≤	85°C	TA ≤ '	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Max	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
VOH	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	VIN = VIH or VIL IOH = -50µA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
IIN	Maximum Input Leakage Current	V _{IN} = 5.5V or GND	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				Г	A = 25°0	C	T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
tPLH, Maximum tPHL Propogation Delay,		$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.0 5.4	7.9 11.4		9.5 13.0		11.0 15.5	ns
	Input A or B to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.0 3.8	5.5 7.5		6.5 8.5		8.0 10.0	
C _{IN}	Maximum Input Capacitance				5.5	10		10		10	pF
						Ту	/pical @	25°C, V	CC = 5.0	V	
Срп	Power Dissipation Car	pacitance (Note 1.)						11			рF

 CPD
 Power Dissipation Capacitance (Note 1.)
 11
 pF

 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR)=CPD • VCC • fin + ICC. CPD is used to determine the no-load dynamic power consumption; PD = CPD • VCC² • fin + ICC • VCC.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

DEVICE ORDERING INFORMATION

Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G02DFT1	MC	74	VHC1G	02	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

Product Preview 2-Input NOR Gate with Open Drain Output

The MC74VHC1G03 is an advanced high speed CMOS 2–input NOR gate with an open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including an open drain output which provides the capability to set output switching level. This allows the MC74VHC1G03 to be used to interface 5V circuits to circuits of any voltage between V_{CC} and 7V using an external resistor and power supply.

The MC74VHC1G03 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage.

- High Speed: $t_{PD} = 3.6ns$ (Typ) at $V_{CC} = 5V$
- Low Internal Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT					
1	IN B				
2	IN A				
3	GND				
4	OUT Y				
5	VCC				

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 21 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
А	В	Ŧ
L	L	Z
L	н L	L
н	L	L
Н	Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage	Vout	-0.5 to 7.0	V
Input Diode Current	lік	-20	mA
$Output Diode Current \qquad (V_{OUT} < GND; V_{OUT} > V_{CC})$	lок	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	Vcc	2.0 5.5		V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	Vout	0.0	7.0	V
Operating Temperature Range	Т _А	-55	+85	°C
Input Rise and Fall Time $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$	t _r , t _f	0 0	100 20	ns/V

			Vcc	т	A = 25°0	0	TA≤	85°C	TA ≤ '	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
VOH	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	VIN = VIH or VIL IOH = -50µA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		V _{IN} = V _{IH} or V _{IL} I _{OL} = 4mA I _{OL} = 8mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
IOPD	Maximum Off-state Leakage Current	V _{OUT} = 5.5V	0			0.25		2.5		5.0	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

					A = 25°C	2	T _A ≤ 85°C		$T_{A} \leq 125^{\circ}C$		
Symbol	Parameter	Test Conditions	ĺ	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PZL	Maximum Output Enable Time,		= 15 pF = 50 pF		5.6 8.1	7.9 11.4		9.5 13.0		11.0 15.5	ns
Input A or B to	Input A or B to Y	$\begin{array}{c} V_{CC} = 5.0 \pm 0.5 V & C_L = \\ R_L = 1 K \Omega & C_L = \end{array}$	= 15 pF = 50 pF		3.6 5.1	5.5 7.5		6.5 8.5		8.0 10.0	
^t PLZ	Maximum Output	V_{CC} = 3.0 \pm 0.3V, RL = 1K\Omega, CL	= 50 pF		8.1	11.4		13.0		15.5	ns
	Disable Time	V_{CC} = 5.0 ± 0.5V, R _L = 1KΩ, C _L	= 50 pF		5.1	7.5		8.5		10.0	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF
	· · · · · · · · · · · · · · · · · · ·						•			· · · ·	

		Typical @ 25°C, V _{CC} = 5.0V	
CPD	Power Dissipation Capacitance (Note 1.)	18	pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC}(OPR) = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} $\bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Figure 2. Output Voltage Mismatch Application

*Includes all probe and jig capacitance

Figure 4. Test Circuit

Figure 3. Switching Waveforms

DEVICE ORDERING INFORMATION

			Device Nome	enclature				
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G03DFT1	MC	74	VHC1G	03	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

Inverter

The MC74VHC1G04 is an advanced high speed CMOS inverter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1G04 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1G04 to be used to interface 5V circuits to 3V circuits.

- High Speed: $t_{PD} = 3.5 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 1500V; MM > 200V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT					
1	NC				
2	IN A				
3	GND				
4	OUT T				
5	VCC				

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 25 of this data sheet.

FUNCTION TABLE

A Input	Y Output
L	н
Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
$Output Diode Current \qquad (V_{OUT} < GND; V_{OUT} > V_{CC})$	ЮК	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	TL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC--88A Package: -3 mW/°C from 65° to 125°C

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	V _{CC} 2.0 5.5		V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	VOUT	0.0	VCC	V
Operating Temperature Range	TA	-55	+85	°C
Input Rise and Fall Time $$V_{CC}$=3.3V\pm0.3V$\\ V_{CC}=5.0V\pm0.5V$$	t _r ,t _f	0 0	100 20	ns/V

			Vcc	т	A = 25°	C	T _A ≤	85°C	TA ≤ ′	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Мах	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
VOH	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				Г	A = 25°0	C	T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PLH, ^t PHL	Maximum Propogation Delay,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.5 6.4	7.1 10.6		8.5 12.0		10.0 14.5	ns
	Input A to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.5 4.5	5.5 7.5		6.5 8.5		8.0 10.0	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF
	Typical @ 25°C, V _{CC} = 5.0V							DV			
Срп	Power Dissipation Car	pacitance (Note 1.)						8.0			рF

 CPD
 Power Dissipation Capacitance (Note 1.)
 8.0
 pF

 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR)=CPD • VCC • fin + ICC. CPD is used to determine the no-load dynamic power consumption; PD = CPD • VCC² • fin + ICC • VCC.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

DEVICE ORDERING INFORMATION

		Device Nomenclature						
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G04DFT1	MC	74	VHC1G	04	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

Product Preview Inverter with Open Drain Output

The MC74VHC1G05 is an advanced high speed CMOS inverter with open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including an open drain output which provides the capability to set output switching level. This allows the MC74VHC1G05 to be used to interface 5V circuits to circuits of any voltage between V_{CC} and 7V using an external resistor and power supply.

The MC74VHC1G05 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage.

- High Speed: $t_{PD} = 3.8 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Internal Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT
1	NC
2	IN A
3	GND
4	OUT T
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 29 of this data sheet.

FUNCTION TABLE

A Input	Y Output
L	Z
Н	L

Semiconductor Components Industries, LLC, 1999 October, 1999 – Rev. 0.0

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	Vcc	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage	Vout	-0.5 to 7.0	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	ЮК	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V _{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	Vcc	2.0	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	Vout	0.0	7.0	V
Operating Temperature Range	Т _А	-55	+85	°C
Input Rise and Fall Time $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$	t _r , t _f	0 0	100 20	ns/V

			Vcc	Т	A = 25°	C	T _A ≤	85°C	TA ≤ <i>'</i>	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Max	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
V _{OH}	Minimum High–Level Output Voltage VIN = VIH or VIL	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
IOPD	Maximum Off-state Leakage Current	V _{OUT} = 5.5V	0			0.25		2.5		5.0	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				T _A = 25°C		C	T _A ≤ 85°C		$T_{\mbox{A}} \leq 125^{\circ} \mbox{C}$		
Symbol	Parameter	Test Condition	ns	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PZL	Maximum Output Enable Time,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		5.0 7.5	7.1 10.6		8.5 12.0		10.0 14.5	ns
	Input A to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.8 5.3	5.5 7.5		6.5 8.5		8.0 10.0	
^t PLZ	Maximum Output	$V_{CC} = 3.0 \pm 0.3 V, R_{L} = 1 K$	Ω, C _L = 50 pF		7.5	10.6		12.0		14.5	ns
	Disable Time	$V_{CC} = 5.0 \pm 0.5 V, R_{L} = 1 K$	Ω, C _L = 50 pF		5.3	7.5		8.5		10.0	ns
CIN	Maximum Input Capacitance				4	10		10		10	pF

		Typical @ 25° C, VCC = 5.0V	
C _{PD}	Power Dissipation Capacitance (Note 1.)	18	pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC}(OPR) = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} $\bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Figure 2. Output Voltage Mismatch Application

*Includes all probe and jig capacitance

Figure 4. Test Circuit

Figure 3. Switching Waveforms

DEVICE ORDERING INFORMATION

		Device Nomenclature						
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G05DFT1	MC	74	VHC1G	05	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

Product Preview Noninverting Buffer with Open Drain Output

The MC74VHC1G07 is an advanced high speed CMOS buffer with open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer and an open drain output which provides the capability to set the output switching level. This allows the MC74VHC1G07 to be used to interface 5V circuits to circuits of any voltage between V_{CC} and 7V using an external resistor and power supply.

The MC74VHC1G07 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage.

- High Speed: $t_{PD} = 3.8 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Internal Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT
1	NC
2	IN A
3	GND
4	OUT Y
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 33 of this data sheet.

FUNCTION TABLE

A Input	Y Output
L	Z
Н	L

Semiconductor Components Industries, LLC, 1999 October, 1999 – Rev. 0.0

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage	Vout	-0.5 to 7.0	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	юк	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V _{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	тլ	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	Vcc	2.0	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	Vout	0.0	7.0	V
Operating Temperature Range	Т _А	-55	+85	°C
Input Rise and Fall Time $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$	t _r , t _f	0 0	100 20	ns/V

			Vcc	Т	A = 25°0	0	TA≤	85°C	TA ≤ '	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
VOH	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	VIN = VIH or VIL I _{OH} = -50µA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		V _{IN} = V _{IH} or V _{IL} I _{OL} = 4mA I _{OL} = 8mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
IOPD	Maximum Off-state Leakage Current	V _{OUT} = 5.5V	0			0.25		2.5		5.0	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				T _A = 25°C		0	T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Condition	IS	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PZL	Maximum Output Enable Time,	$V_{CC} = 3.0 \pm 0.3 V$ R _L = 1K Ω	C _L = 15 pF C _L = 50 pF		5.0 7.5	7.1 10.6		8.5 12.0		10.0 14.5	ns
	Input A to Y	$V_{CC} = 5.0 \pm 0.5 V$ R _L = 1K Ω	C _L = 15 pF C _L = 50 pF		3.8 5.3	5.5 7.5		6.5 8.5		8.0 10.0	
^t PLZ	Maximum Output	$V_{CC} = 3.0 \pm 0.3 V, R_{L} = 1 K_{2}$	Ω, C _L = 50 pF		7.5	10.6		12.0		14.5	ns
	Disable Time	$V_{CC} = 5.0 \pm 0.5 V, R_{L} = 1 K_{2}$	Ω, C _L = 50 pF		5.3	7.5		8.5		10.0	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF

			Typical @ 25° C, V _{CC} = 5.0V	
(CPD	Power Dissipation Capacitance (Note 1.)	18	рF
	<u> </u>			

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} $\bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Figure 2. Output Voltage Mismatch Application

*Includes all probe and jig capacitance

Figure 4. Test Circuit

Figure 3. Switching Waveforms

DEVICE ORDERING INFORMATION

	Device Nomenclature							
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G07DFT1	MC	74	VHC1G	07	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

2-Input AND Gate

The MC74VHC1G08 is an advanced high speed CMOS 2–input AND gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1G08 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1G08 to be used to interface 5V circuits to 3V circuits.

- High Speed: $tp_D = 3.5ns$ (Typ) at $V_{CC} = 5V$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT					
1	IN B				
2	IN A				
3	GND				
4	OUT Y				
5	VCC				

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 37 of this data sheet.

FUNCTION TABLE

Inp	uts	Output		
Α	В	Y		
L	L	I		
L	н	L		
н	L	L		
Н	Н	Н		

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	IOK	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC–88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC--88A Package: -3 mW/°C from 65° to 125°C

Characteristics	Symbol	Min	Max	Unit							
DC Supply Voltage	VCC	2.0	5.5	V							
DC Input Voltage	VIN	0.0	5.5	V							
DC Output Voltage	VOUT	0.0	VCC	V							
Operating Temperature Range	TA	-55	+85	°C							
Input Rise and Fall Time $$V_{CC}$=3.3V\pm0.3V$\\ V_{CC}=5.0V\pm0.5V$$	t _r ,t _f	0 0	100 20	ns/V							
			Vcc	т	A = 25°	C	T _A ≤	85°C	TA ≤ '	125°C	
-----------------	--	--	--------------------------	----------------------------	-------------------	----------------------------	----------------------------	----------------------------	----------------------------	----------------------------	------
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Мах	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
VOH	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				T	T _A = 25°C		T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Conditions		Min	Тур	Max	Min	Max	Min	Max	Unit
^t PLH, ^t PHL	Maximum Propogation Delay,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.1 5.9	8.8 12.3		10.5 14.0		12.5 16.5	ns
	Input A or B to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.5 4.2	5.9 7.9		7.0 9.0		9.0 11.0	
C _{IN}	Maximum Input Capacitance				5.5	10		10		10	pF
						Ту	Typical @ 25°C, V _{CC} = 5.0V				
Срп	Power Dissipation Car	pacitance (Note 1.)						11			рF

 CPD
 Power Dissipation Capacitance (Note 1.)
 11
 pF

 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR)=CPD • VCC • fin + ICC. CPD is used to determine the no-load dynamic power consumption; PD = CPD • VCC² • fin + ICC • VCC.

Figure 2. Switching Waveforms

*Includes all probe and jig capacitance

Figure 3. Test Circuit

			Device Nome	nclature					
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size	
MC74VHC1G08DFT1	MC	74	VHC1G	08	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit	

Product Preview 2-Input AND Gate with Open Drain Output

The MC74VHC1G09 is an advanced high speed CMOS 2–input AND gate with open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including an open drain output which provides the capability to set output switching level. This allows the MC74VHC1G09 to be used to interface 5V circuits to circuits of any voltage between V_{CC} and 7V using an external resistor and power supply.

The MC74VHC1G09 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage.

- High Speed: $t_{PD} = 4.3 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Internal Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

LOGIC SYMBOL

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT
1	IN B
2	IN A
3	GND
4	OUT Y
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 41 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
А	В	Y
L	L	L
L	н	L
Н	L	L
Н	Н	Z

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	V _{IN}	-0.5 to +7.0	V
DC Output Voltage	VOUT	-0.5 to 7.0	V
Input Diode Current	ΙK	-20	mA
Output Diode Current	ЮК	±20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	Icc	±50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	٥C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	Vcc	2.0	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	Vout	0.0	7.0	V
Operating Temperature Range	Т _А	-55	+85	°C
Input Rise and Fall Time $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$	t _r , t _f	0 0	100 20	ns/V

			Vcc	т	A = 25°	0	T _A ≤	85°C	$T_{\mbox{A}} \leq 125^{\circ} \mbox{C}$		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
VOH	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	VIN = VIH or VIL I _{OH} = -50µA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
IOPD	Maximum Off-state Leakage Current	V _{OUT} = 5.5V	0			0.25		2.5		5.0	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

					T _A = 25°C		T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Condition	าร	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PZL	Maximum Output Enable Time,	$V_{CC} = 3.0 \pm 0.3 V$ R _L = 1K Ω	C _L = 15 pF C _L = 50 pF		6.2 8.7	8.8 12.3		10.5 14.0		12.5 16.5	ns
	Input A or B to Y	$V_{CC} = 5.0 \pm 0.5 V$ R _L = 1K Ω	C _L = 15 pF C _L = 50 pF		4.3 5.8	5.9 7.9		7.0 9.0		9.0 11.0	
^t PLZ	Maximum Output	$V_{CC} = 3.0 \pm 0.3 V, R_{L} = 1 K$	Ω, C _L = 50 pF		8.7	12.3		14.0		16.5	ns
	Disable Time	$V_{CC} = 5.0 \pm 0.5 V, R_{L} = 1 K$	Ω, C _L = 50 pF		5.8	7.9		9.0		11.0	
C _{IN}	Maximum Input Capacitance				6.0	10		10		10	pF
	•	•									

		Typical @ 25°C, VCC = 5.0V	
CPD	Power Dissipation Capacitance (Note 1.)	18	pF
4 0 1 1		al at a at the	

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Figure 2. Output Voltage Mismatch Application

Figure 3. Switching Waveforms

*Includes all probe and jig capacitance

Figure 4. Test Circuit

Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G09DFT1	MC	74	VHC1G	09	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

2-Input NAND Schmitt-Trigger

The MC74VHC1G132 is a single gate CMOS Schmitt NAND trigger fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1G132 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1G132 to be used to interface 5V circuits to 3V circuits.

The MC74VHC1G132 can be used to enhance noise immunity or to square up slowly changing waveforms.

- High Speed: $t_{PD} = 3.6 \text{ns}$ (Typ) at $V_{CC} = 5 \text{V}$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT
1	IN B
2	IN A
3	GND
4	OUT Y
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 45 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
А	В	Ϋ́
L	L	Н
L	н	н
н	L	н
Н	Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	lок	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	٥C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	VOUT	0.0	VCC	V
Operating Temperature Range	TA	-55	+85	°C

			Vcc	ר	A = 25°	С	T _A ≤	85°C	T _A ≤ 125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Мах	Min	Max	Unit
V _{T+}	Positive Threshold Voltage		3.0 4.5 5.5			2.20 3.15 3.85		2.20 3.15 3.85		2.20 3.15 3.85	V
V _T -	Negative Threshold Voltage		3.0 4.5 5.5	0.9 1.35 1.65			0.9 1.35 1.65		0.9 1.35 1.65		V
VH	Hysteresis Voltage		3.0 4.5 5.5	0.30 0.40 0.50		1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	V
V _{OH} Minimum High–Level Output Voltage I _{OH} = –50µA	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V	
		I _{OH} = -4mA I _{OH} = -8mA	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
VOL Maximum Low–Lev Output Voltage	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		I _{OL} = 4mA I _{OL} = 8mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_f/t_f = 3.0 \text{ns}$)

		Test Conditions		T _A = 25°C		T _A ≤ 85°C		T _A ≤ 125°C			
Symbol	Parameter			Min	Тур	Max	Min	Max	Min	Max	Unit
tPLH, Maximum tPHL Propogation Delay, A or B to Y	$V_{CC} = 3.3 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.6 6.1	11.9 15.4	1.0 1.0	14.0 17.5	1.0 1.0	16.1 19.6	ns	
	or B to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.6 4.3	7.7 9.7	1.0 1.0	9.0 11.0	1.0 1.0	10.3 12.3	
C _{IN}	Maximum Input Capacitance				5.5	10		10		10	pF
	Typical @ 25°C, V _{CC} = 5.0V								DV V	-	

 CPD
 Power Dissipation Capacitance (Note 1.)
 11
 pF

 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)}=CPD • V_{CC} • f_{in}+I_{CC}. CPD is used to determine the no–load dynamic power consumption; PD = CPD • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

			Device Nome					
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G132DFT1	MC	74	VHC1G	132	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

Product Preview 2-Input NAND Schmitt-Trigger with Open Drain Output

The MC74VHC1G135 is a single gate CMOS Schmitt NAND trigger with an open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including an open drain output which provides the capability to set the output switching level. This allows the MC74VHC1G135 to be used to interface 5V circuits to circuits of any voltage between V_{CC} and 7V using an external resistor and power supply.

The MC74VHC1G135 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage.

The MC74VHC1G135 can be used to enhance noise immunity or to square up slowly changing waveforms.

- High Speed: $t_{PD} = 4.9 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Internal Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT
1	IN B
2	IN A
3	GND
4	OUT Y
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 49 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
Α	В	Ϋ́
L	L	Z
L	н	Z
н	L	Z
Н	Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	Vcc	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage	Vout	-0.5 to 7.0	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	ЮК	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V _{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	V _{CC}	4.5	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	VOUT	0.0	7.0	V
Operating Temperature Range	TA	-55	+85	°C

			Vcc	Т	A = 25°	C	T _A ≤	85°C	T _A ≤ 125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{T+}	Positive Threshold Voltage		3.0 4.5 5.5			2.20 3.15 3.85		2.20 3.15 3.85		2.20 3.15 3.85	V
V _{T-}	Negative Threshold Voltage		3.0 4.5 5.5	0.9 1.35 1.65			0.9 1.35 1.65		0.9 1.35 1.65		V
VH	Hysteresis Voltage		3.0 4.5 5.5	0.30 0.40 0.50		1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	V
011	Minimum High–Level Output Voltage I _{OH} = -50µA	VIN = VIH or VIL IOH = -50µA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		I _{OH} = -4mA I _{OH} = -8mA	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
VOL	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu \text{A}$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		I _{OL} = 4mA I _{OL} = 8mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
I _{OPD}	Maximum Off-state Leakage Current	V _{OUT} = 5.5V	0			0.25		2.5		5.0	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_f/t_f = 3.0 \text{ns}$)

			T _A = 25°C		T _A ≤ 85°C		T _A ≤ 125°C			
Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
tPZL Maximum Output Enable Time,	V _{CC} = 3.3 ± 0.3V R _L = 1KΩ	C _L = 15 pF C _L = 50 pF		7.6 10.1	11.9 15.4	1.0 1.0	14.0 17.5	1.0 1.0	16.1 19.6	ns
A or B to Y	$V_{CC} = 5.0 \pm 0.5 V$ RL = 1K Ω	C _L = 15 pF C _L = 50 pF		4.9 6.4	7.7 9.7	1.0 1.0	9.0 11.0	1.0 1.0	10.3 12.3	
Maximum Output	V_{CC} = 3.0 ± 0.3V, R _L =	1KΩ, C _L = 50 pF		10.1	15.4		17.5		19.6	ns
Disable Time	$V_{CC} = 5.0 \pm 0.5 V, R_{L} =$	1KΩ, C _L = 50 pF		6.4	9.7		11.0		12.3	
Maximum Input Capacitance				5.0	10		10		10	pF
	Maximum Output Enable Time, A or B to \overline{Y} Maximum Output Disable Time Maximum Input	Maximum Output Enable Time, A or B to \overline{Y} $V_{CC} = 3.3 \pm 0.3V$ $R_L = 1K\Omega$ Maximum Output Disable Time $V_{CC} = 5.0 \pm 0.5V$ $R_L = 1K\Omega$ Maximum Output Disable Time $V_{CC} = 3.0 \pm 0.3V$, $R_L =$ $V_{CC} = 5.0 \pm 0.5V$, $R_L =$ Maximum Input $V_{CC} = 5.0 \pm 0.5V$, $R_L =$	$ \begin{array}{c} \text{Maximum Output} \\ \text{Enable Time,} \\ \text{A or B to } \overline{Y} \end{array} \begin{array}{c} \text{V}_{\text{CC}} = 3.3 \pm 0.3 \text{V} \\ \text{R}_{\text{L}} = 1 \text{K} \Omega \end{array} \begin{array}{c} \text{C}_{\text{L}} = 15 \text{ pF} \\ \text{C}_{\text{L}} = 50 \text{ pF} \end{array} \\ \hline \text{V}_{\text{CC}} = 5.0 \pm 0.5 \text{V} \\ \text{R}_{\text{L}} = 1 \text{K} \Omega \end{array} \begin{array}{c} \text{C}_{\text{L}} = 50 \text{ pF} \end{array} \\ \hline \text{Maximum Output} \\ \text{Disable Time} \end{array} \begin{array}{c} \text{V}_{\text{CC}} = 3.0 \pm 0.3 \text{V}, \text{R}_{\text{L}} = 1 \text{K} \Omega, \text{C}_{\text{L}} = 50 \text{ pF} \end{array} \\ \hline \text{V}_{\text{CC}} = 5.0 \pm 0.3 \text{V}, \text{R}_{\text{L}} = 1 \text{K} \Omega, \text{C}_{\text{L}} = 50 \text{ pF} \end{array} \\ \hline \text{Maximum Input} \end{array}$	ParameterTest ConditionsMinMaximum Output Enable Time, A or B to \overline{Y} $V_{CC} = 3.3 \pm 0.3V$ $R_L = 1K\Omega$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$ $V_{CC} = 5.0 \pm 0.5V$ $R_L = 1K\Omega$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$ Maximum Output Disable Time $V_{CC} = 3.0 \pm 0.3V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ $V_{CC} = 5.0 \pm 0.5V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ Maximum Input $V_{CC} = 5.0 \pm 0.5V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$	$\begin{tabular}{ c c c c } \hline Parameter & Test Conditions & Min & Typ \\ \hline Maximum Output Enable Time, A or B to \overline{Y} & $V_{CC} = 3.3 \pm 0.3V$ & $C_L = 15 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	Parameter Test Conditions Min Typ Max Maximum Output Enable Time, A or B to Y $V_{CC} = 3.3 \pm 0.3V$ $C_L = 15 \text{ pF}$ $R_L = 1K\Omega$ $C_L = 50 \text{ pF}$ 10.1 11.9 $V_{CC} = 5.0 \pm 0.5V$ $C_L = 15 \text{ pF}$ $R_L = 1K\Omega$ $C_L = 50 \text{ pF}$ 4.9 7.7 Maximum Output Disable Time $V_{CC} = 3.0 \pm 0.3V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 10.1 15.4 $V_{CC} = 5.0 \pm 0.5V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 10.1 15.4 $V_{CC} = 5.0 \pm 0.5V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 6.4 9.7 Maximum Input $V_{CC} = 5.0 \pm 0.5V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 10.1 15.4	Parameter Test Conditions Min Typ Max Min Maximum Output Enable Time, A or B to \overline{Y} $V_{CC} = 3.3 \pm 0.3V$ $C_L = 15 \text{ pF}$ 7.6 11.9 1.0 $V_{CC} = 5.0 \pm 0.5V$ $C_L = 50 \text{ pF}$ 10.1 15.4 1.0 $V_{CC} = 5.0 \pm 0.5V$ $C_L = 50 \text{ pF}$ 4.9 7.7 1.0 $Naximum Output$ $V_{CC} = 3.0 \pm 0.3V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 10.1 15.4 1.0 Maximum Output $V_{CC} = 3.0 \pm 0.3V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 10.1 15.4 1.0 Maximum Output $V_{CC} = 3.0 \pm 0.3V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 6.4 9.7 1.0 Maximum Input V_{CC} = 5.0 \pm 0.5V, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 5.0 10 10	Parameter Test Conditions Min Typ Max Min Max Maximum Output Enable Time, A or B to \overline{Y} $V_{CC} = 3.3 \pm 0.3V$ $C_L = 15 \text{ pF}$ $R_L = 1K\Omega$ 7.6 11.9 1.0 14.0 $V_{CC} = 5.0 \pm 0.5V$ $C_L = 50 \text{ pF}$ 10.1 15.4 1.0 17.5 $V_{CC} = 5.0 \pm 0.5V$ $C_L = 15 \text{ pF}$ $R_L = 1K\Omega$ $C_L = 50 \text{ pF}$ 4.9 7.7 1.0 9.0 Maximum Output Disable Time $V_{CC} = 3.0 \pm 0.3V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 10.1 15.4 17.5 Maximum Input $V_{CC} = 5.0 \pm 0.5V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 6.4 9.7 11.0 Maximum Input Image: Simple Time $V_{CC} = 5.0 \pm 0.5V$, $R_L = 1K\Omega$, $C_L = 50 \text{ pF}$ 5.0 10 10	Parameter Test Conditions Min Typ Max Min Max Max Min Max	Parameter Test Conditions Min Typ Max Min Max Min Max Maximum Output Enable Time, A or B to \overline{Y} $V_{CC} = 3.3 \pm 0.3V$ $R_{L} = 1K\Omega$ $C_{L} = 15 \text{ pF}$ $R_{L} = 1K\Omega$ 7.6 $C_{L} = 50 \text{ pF}$ 11.9 10.1 1.0 1.0 14.0 1.0 1.0 1.0 16.1 19.6 Maximum Output Disable Time $V_{CC} = 3.0 \pm 0.5V$ $R_{L} = 1K\Omega$ $C_{L} = 15 \text{ pF}$ $C_{L} = 50 \text{ pF}$ 4.9 6.4 7.7 9.7 1.0 1.0 10.0 11.0 10.3 12.3 Maximum Output Disable Time $V_{CC} = 3.0 \pm 0.3V$, $R_{L} = 1K\Omega$, $C_{L} = 50 \text{ pF}$ 10.1 15.4 1.0 1.0 17.5 19.6 Maximum Output Disable Time $V_{CC} = 5.0 \pm 0.5V$, $R_{L} = 1K\Omega$, $C_{L} = 50 \text{ pF}$ 6.4 9.7 11.0 11.0 12.3 Maximum Input V_CC = 5.0 \pm 0.5V, $R_{L} = 1K\Omega$, $C_{L} = 50 \text{ pF}$ 5.0 10 10 10

		Typical @ 25°C, V _{CC} = 5.0V	
C _{PD}	Power Dissipation Capacitance (Note 1.)	16	pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Figure 2. Output Voltage Mismatch Application

*Includes all probe and jig capacitance

Figure 4. Test Circuit

Figure 3. Switching Waveforms

		Device Nomenclature						
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G135DFT1	MC	74	VHC1G	135	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

Schmitt-Trigger Inverter

The MC74VHC1G14 is a single gate CMOS Schmitt-trigger inverter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1G14 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1G14 to be used to interface 5V circuits to 3V circuits.

The MC74VHC1G14 can be used to enhance noise immunity or to square up slowly changing waveforms.

- High Speed: $t_{PD} = 4.0$ ns (Typ) at $V_{CC} = 5V$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA

Figure 1. 5-Lead SOT-353 Pinout (Top View)

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT							
1	NC						
2	IN A						
3	GND						
4	OUT T						
5	VCC						

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 53 of this data sheet.

FUNCTION TABLE

A Input	Y Output
L	Н
Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	IOK	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC–88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	VOUT	0.0	VCC	V
Operating Temperature Range	Т _А	-55	+85	°C

			Vcc	ר	A = 25°	0	T _A ≤	85°C	TA ≤ ′	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Мах	Min	Max	Unit
V _{T+}	Positive Threshold Voltage		3.0 4.5 5.5	1.85 2.86 3.50	2.0 3.0 3.6	2.20 3.15 3.85		2.20 3.15 3.85		2.20 3.15 3.85	V
V _T -	Negative Threshold Voltage		3.0 4.5 5.5	0.9 1.35 1.65	1.5 2.3 2.9	1.65 2.46 3.05	0.9 1.35 1.65		0.9 1.35 1.65		V
VH	Hysteresis Voltage		3.0 4.5 5.5	0.30 0.40 0.50	0.57 0.67 0.74	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	V
VOH	Minimum High–Level Output Voltage I _{OH} = -50μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		I _{OH} = -4mA I _{OH} = -8mA	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
VOL	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		I _{OL} = 4mA I _{OL} = 8mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
IIN	Maximum Input Leakage Current	$V_{IN} = 5.5 V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_f/t_f = 3.0 \text{ns}$)

				٦	T _A = 25°C		T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Condi	Test Conditions		Тур	Max	Min	Max	Min	Мах	Unit
tplH, tpHL	Maximum Propogation Delay,	$V_{CC} = 3.3 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		7.0 8.5	12.8 16.3	1.0 1.0	15.0 18.5	1.0 1.0	17.0 20.5	ns
A to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		4.0 5.5	8.6 10.6	1.0 1.0	10.0 12.0	1.0 1.0	11.5 13.5		
C _{IN}	Maximum Input Capacitance				5	10		10		10	pF
	Typical @ 25°C, V _{CC} = 5.0V							-			

 CPD
 Power Dissipation Capacitance (Note 1.)
 7.0
 pF

 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)}=CPD • V_{CC} • f_{in}+I_{CC}. CPD is used to determine the no–load dynamic power consumption; PD = CPD • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

		Device Nomenclature						
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G14DFT1	MC	74	VHC1G	14	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

2-Input OR Gate

The MC74VHC1G32 is an advanced high speed CMOS 2–input OR gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1G32 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1G32 to be used to interface 5V circuits to 3V circuits.

- High Speed: $tp_D = 3.7ns$ (Typ) at $V_{CC} = 5V$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT						
1	IN B					
2	IN A					
3	GND					
4	OUT Y					
5	VCC					

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 57 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
Α	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	н

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	IOK	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC--88A Package: -3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	2.0	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	VOUT	0.0	VCC	V
Operating Temperature Range	TA	-55	+85	°C
Input Rise and Fall Time $$V_{CC}$=3.3V\pm0.3V$\\ V_{CC}=5.0V\pm0.5V$$	t _r ,t _f	0 0	100 20	ns/V

			Vcc	т	A = 25°	C	T _A ≤	85°C	TA ≤ '	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Мах	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
VOH	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				T _A = 25°C		C	T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Conditions		Min	Тур	Max	Min	Max	Min	Мах	Unit
^t PLH, ^t PHL	Maximum Propogation Delay,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.8 6.1	7.9 11.4		9.5 13.0		11.5 15.5	ns
	Input A or B to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.7 4.4	5.5 7.5		6.5 8.5		8.0 10.0	1
C _{IN}	Maximum Input Capacitance				5.5	10		10		10	pF
Typical @ 25°C, V _{CC} = 5.0V											
Срр	Power Dissipation Car	pacitance (Note 1.)						11			рF

 CPD
 Power Dissipation Capacitance (Note 1.)
 11
 pF

 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR)=CPD • VCC • fin + ICC. CPD is used to determine the no-load dynamic power consumption; PD = CPD • VCC² • fin + ICC • VCC.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size	
MC74VHC1G32DFT1	MC	74	VHC1G	32	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit	

Advance Information Analog Switch

The MC74VHC1G66 is an advanced high speed CMOS bilateral analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. This bilateral switch controls analog and digital voltages that may vary across the full power–supply range (from V_{CC} to GND).

The MC74VHC1G66 is compatible in function to a single gate of the High Speed CMOS MC74VHC4066 and the metal–gate CMOS MC14066. The device has been designed so that the ON resistances (R_{ON}) are much lower and more linear over input voltage than R_{ON} of the metal–gate CMOS or High Speed CMOS analog switches.

The ON/OFF control inputs are compatible with standard CMOS outputs; with pull–up resistors, it is compatible with LSTTL outputs.

- High Speed: $t_{PD} = TBD$ (Typ) at $V_{CC} = 5 V$
- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Diode Protection Provided on Inputs and Outputs
- Improved Linearity and Lower ON Resistance over Input Voltage than the MC14066 or the HC4066
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; MM > 200 V, CDM > 1500 V
- Chip Complexity: 11 FETs or 3 Equivalent Gates

5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT
1	IN/OUT X _A
2	OUT/IN Y _A
3	GND
4	ON/OFF CONTROL
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 64 of this data sheet.

FUNCTION TABLE

State of Analog Switch
Off
On

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
Digital Input Voltage	VIN	–0.5 to V _{CC} +0.5	V
Analog Output Voltage	V _{IS}	–0.5 to V _{CC} + 0.5	V
Digital Input Diode Current	liκ	-20	mA
DC Supply Current, V_{CC} and GND	ICC	+25	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

†Derating — SC–88A Package: –3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
Digital Input Voltage	V _{IN}	GND	V _{CC}	V
Analog Input Voltage	VIS	GND	VCC	V
Static or Dynamic Voltage Across Switch	V _{IO} *		1.2	V
Operating Temperature Range	TA	-55	+85	°C
Input Rise and Fall Time ON/OFF Control Input $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$	t _r , t _f	0 0	100 20	ns/V

* For voltage drops across the switch greater than 1.2V (switch on), excessive V_{CC} current may be drawn; i.e. the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

			Vcc	Т	A = 25°	C	T _A ≤	85°C	TA ≤ ′	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
VIH	Minimum High–Level Input Voltage ON/OFF Control Input	R _{ON} = Per Spec	2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage ON/OFF Control Input	R _{ON} = Per Spec	2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
IIN	Maximum Input Leakage Current ON/OFF Control Input	$V_{IN} = V_{CC} \text{ or } GND$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC} \text{ or GND}$ $V_{IO} = 0V$	5.5			2.0		20		40	μA
R _{ON}	Maximum "ON" Resistance	$V_{IN} = V_{IH}$ $V_{IS} = V_{CC}$ or GND $ I_{IS} \le 10$ mA (Figure 1)	3.0 4.5 5.5		30 20 15	50 30 20		70 40 35		100 50 45	Ω
		$ \begin{array}{l} \mbox{Endpoints} \\ \mbox{V}_{IN} = \mbox{V}_{IH} \\ \mbox{V}_{IS} = \mbox{V}_{CC} \mbox{ or GND} \\ \mbox{ I}_{IS} \end{tabular} \leq 10 \mbox{mA} \mbox{ (Figure 1)} \end{array} $	3.0 4.5 5.5		25 12 8	50 20 15		65 26 23		90 40 32	Ω
IOFF	Maximum Off–Channel Leakage Current	$V_{IN} = V_{IL}$ $V_{IS} = V_{CC}$ or GND Switch Off (Figure 2)	5.5			0.1		0.5		1.0	μA
ION	Maximum On–Channel Leakage Current	VIN = VIH VIS = V _{CC} or GND Switch On (Figure 3)	5.5			0.1		0.5		1.0	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_f/t_f = 3.0 \text{ns}$)

			Vcc	Г	A = 25°C	C	T _A ≤	85°C	TA ≤ ′	125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit	
^t PLH, ^t PHL	Maximum Propogation Delay, Input X to Y	Y _A = Open Figure 4	2.0 3.0 4.5 5.5		1 0 0 0	5 2 1 1		6 3 1 1		7 4 2 1	ns	
^t PLZ [,] ^t PHZ	Maximum Propogation Delay, ON/OFF Control to Analog Output	$R_L = 1000 \Omega$ Figure 5	2.0 3.0 4.5 5.5		15 8 6 4	35 15 10 7		46 20 13 9		57 25 17 11	ns	
^t PZL [,] ^t PZH	Maximum Propogation Delay, ON/OFF Control to Analog Output	$R_L = 1000 \Omega$ Figure 5	2.0 3.0 4.5 5.5		15 8 6 4	35 15 10 7		46 20 13 9		57 25 17 11	ns	
C _{IN}	Maximum Input	ON/OFF Control Input	0.0		3	10		10		10	pF	
	Capacitance	Capacitance Contol Input = GND Analog I/O Feedthrough		5.0		4 4	10 10		10 10		10 10	
						Ту	pical @	25°C, V	CC = 5.0	v		
C _{PD}	Power Dissipation Capacitance (Note NO TAG)						18				pF	

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} $\bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Test Conditions	vcc	Limit 25°C	Unit
BW	Maximum On–Channel Bandwidth or Minimum Frequency Response Figure 7	$ \begin{array}{l} f_{in} = 1 \mbox{ MHz Sine Wave} \\ \mbox{Adjust } f_{in} \mbox{ voltage to obtain 0 dBm at } V_{OS} \\ \mbox{Increase } f_{in} = \mbox{frequency until dB meter reads } -3\mbox{dB} \\ \mbox{R}_L = 50\Omega, \mbox{C}_L = 10 \mbox{ pF} \end{array} $	3.0 4.5 5.5	150 175 200	MHz
ISO _{off}	Off–Channel Feedthrough Isolation Figure 8		3.0 4.5 5.5	-50 -50 -50	dB
		f _{in} = 1.0 kHz, R _L = 50Ω, C _L = 10 pF	3.0 4.5 5.5	-40 -40 -40	
NOISE _{feed}	Feedthrough Noise Control to Switch Figure 9		3.0 4.5 5.5	45 60 130	mVPP
		R _L = 50Ω, C _L = 10 pF	3.0 4.5 5.5	25 30 60	
THD	Total Harmonic Distortion Figure 10	$ f_{in} = 1 \text{ kHz}, \text{ R}_L = 10 \text{k}\Omega, \text{ C}_L = 50 \text{ pF} \\ THD = THD_{Measured} - THD_{Source} \\ V_{IS} = 3.0 \text{ Vpp sine wave} \\ V_{IS} = 4.0 \text{ Vpp sine wave} \\ V_{IS} = 5.0 \text{ Vpp sine wave} \\ $	3.3 4.5 5.5	0.20 0.10 0.06	%

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} $\bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Figure 2. Maximum Off–Channel Leakage Current Test Set–Up

Figure 4. Propagation Delay Test Set-Up

Figure 7. Maximum On–Channel Bandwidth Test Set–Up

Figure 9. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set–Up

Figure 11. Propagation Delay, Analog In to Analog Out Waveforms

Figure 10. Total Harmonic Distortion Test Set–Up

Figure 12. Propagation Delay, ON/OFF Control

Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G66DFT1	MC	74	VHC1G	66	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

2-Input Exclusive OR Gate

The MC74VHC1G86 is an advanced high speed CMOS 2–input Exclusive OR gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1G86 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1G86 to be used to interface 5V circuits to 3V circuits.

- High Speed: $tp_D = 3.5ns$ (Typ) at $V_{CC} = 5V$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT							
1	IN B						
2	IN A						
3	GND						
4	OUT Y						
5	VCC						

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 68 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
Α	В	Y
L	L	L
L	н	н
н	L	н
Н	Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	IOK	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC–88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC--88A Package: -3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	2.0	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	VOUT	0.0	VCC	V
Operating Temperature Range	TA	-55	+85	°C
Input Rise and Fall Time $$V_{CC}$=3.3V\pm0.3V$\\ V_{CC}=5.0V\pm0.5V$$	t _r ,t _f	0 0	100 20	ns/V

			Vcc	т	A = 25°	C	T _A ≤	85°C	TA ≤ '	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Мах	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.5 2.1 3.15 3.85			1.5 2.1 3.15 3.85		1.5 2.1 3.15 3.85		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65		0.5 0.9 1.35 1.65	V
VOH	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				T _A = 25°C		C	T _A ≤ 85°C			T _A ≤ 125°C	
Symbol	Parameter	Test Conditions		Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Maximum Propogation Delay,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.4 5.7	11.0 14.5		13.0 16.5		15.5 19.5	ns
	Input A or B to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.5 4.2	6.8 8.8		8.0 10.0		10.0 12.0	
C _{IN}	Maximum Input Capacitance				5.5	10		10		10	pF
Typical @ 25°C, V _{CC} = 5.0V								DV V			
Срп	Power Dissipation Car	pacitance (Note 1.)						10			рF

 CPD
 Power Dissipation Capacitance (Note 1.)
 10
 pF

 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR)=CPD • VCC • fin + ICC. CPD is used to determine the no-load dynamic power consumption; PD = CPD • VCC² • fin + ICC • VCC.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

		_	Device Nome					
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1G86DFT1	MC	74	VHC1G	86	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

2-Input NAND Gate / CMOS Logic Level Shifter with LSTTL-Compatible Inputs

The MC74VHC1GT00 is a single gate 2–input NAND fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device input is compatible with TTL-type input thresholds and the output has a full 5V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0V CMOS logic to 5.0V CMOS Logic or from 1.8V CMOS logic to 3.0V CMOS Logic while operating at the high-voltage power supply.

The MC74VHC1GT00 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1GT00 to be used to interface 5V circuits to 3V circuits. The output structures also provide protection when $V_{CC} = 0V$. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

- High Speed: $t_{PD} = 3.1 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL-Compatible Inputs: $V_{IL} = 0.8V$; $V_{IH} = 2.0V$
- CMOS–Compatible Outputs: V_{OH}>0.8V_{CC}; V_{OL}<0.1V_{CC} @Load
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT								
1	IN B							
2	IN A							
3	GND							
4	OUT Y							
5	VCC							

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 72 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
А	В	Y
L	L	Н
L	н	Н
Н	L	Н
Н	Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	lok	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -5 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	0.0 0.0	5.5 V _{CC}	V
Operating Temperature Range	Т _А	-55	+85	°C
Input Rise and Fall Time V_{CC} = 3.3V ± 0.3V V_{CC} = 5.0V ± 0.5V	t _r , t _f	0 0	100 20	ns/V

						С	T _A ≤	85°C	TA ≤ ²	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Мах	Min	Мах	Unit
VIH	Minimum High–Level Input Voltage		3.0 4.5 5.5	1.2 2.0 2.0			1.2 2.0 2.0		1.2 2.0 2.0		V
VIL	Maximum Low–Level Input Voltage		3.0 4.5 5.5			0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V
VOH	Minimum High–Level Output Voltage	V _{IN} = V _{IH} or V _{IL} I _{OH} = –50µA	3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V
	VIN = VIH or VIL	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
VOL	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$	3.0 4.5		0.0 0.0	0.1 0.1		0.1 0.1		0.1 0.1	V
	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
IIN	Maximum Input Leakage Current	V_{IN} = 5.5V or GND	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
ICCT	Quiescent Supply Current	Input: V _{IN} = 3.4V	5.5			1.35		1.50		1.65	mA
IOPD	Output Leakage Current	V _{OUT} = 5.5V	0.0			0.5		5.0		10	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

			T _A = 25°C			T _A ≤ 85°C		T _A ≤ 125°C			
Symbol	Parameter	Test Conditions		Min	Тур	Max	Min	Max	Min	Мах	Unit
^t PLH, ^t PHL	Maximum Propogation Delay, Input A or B to Y	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.1 5.5	10.0 13.5		11.0 15.0		13.0 17.5	ns
		$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.1 3.6	6.9 7.9		8.0 9.0		9.5 10.5	
C _{IN}	Maximum Input Capacitance				5.5	10		10		10	pF
							Typical @ 25°C, V _{CC} = 5.0V				
C _{PD}	Power Dissipation Capacitance (Note 1.)						11				pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

	Device Nomenclature								
Device Order Number	Circuit Indicator	Temp Range Identifier	Tech– nology	Input Type	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1GT00DFT1	MC	74	VHC1G	т	00	DF	T1	SC88A/ SOT353	7–Inch/3000 Unit

2-Input NOR Gate / CMOS Logic Level Shifter with LSTTL-Compatible Inputs

The MC74VHC1GT02 is a single gate 2–input NOR fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device input is compatible with TTL-type input thresholds and the output has a full 5V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0V CMOS logic to 5.0V CMOS Logic or from 1.8V CMOS logic to 3.0V CMOS Logic while operating at the high-voltage power supply.

The MC74VHC1GT02 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1GT02 to be used to interface 5V circuits to 3V circuits. The output structures also provide protection when $V_{CC} = 0V$. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

- High Speed: $t_{PD} = 4.7 ns$ (Typ) at $V_{CC} = 5V$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL–Compatible Inputs: $V_{IL} = 0.8V$; $V_{IH} = 2.0V$
- CMOS–Compatible Outputs: V_{OH}>0.8V_{CC}; V_{OL}<0.1V_{CC} @Load
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT						
1	IN B					
2	IN A					
3	GND					
4	OUT Y					
5	VCC					

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 76 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
А	В	Y
L	L	Н
L	н	L
Н	L	L
Н	Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	lок	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	٥C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -5 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	0.0 0.0	5.5 V _{CC}	V
Operating Temperature Range	Т _А	-55	+85	°C
Input Rise and Fall Time V_{CC} = 3.3V ± 0.3V V_{CC} = 5.0V ± 0.5V	t _r , t _f	0 0	100 20	ns/V

			Vcc	T _A = 25°C			T _A ≤	85°C	T _A ≤ 125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Мах	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		3.0 4.5 5.5	1.2 2.0 2.0			1.2 2.0 2.0		1.2 2.0 2.0		V
VIL	Maximum Low–Level Input Voltage		3.0 4.5 5.5			0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V
V _{OH} Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	V _{IN} = V _{IH} or V _{IL} I _{OH} = -50µA	3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V	
	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
VOL	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu \text{A}$	3.0 4.5		0.0 0.0	0.1 0.1		0.1 0.1		0.1 0.1	V
	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5 V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
ICCT	Quiescent Supply Current	Per Input: V _{IN} = 3.4V Other Input: V _{CC} or GND	5.5			1.35		1.50		1.65	mA
IOPD	Output Leakage Current	V _{OUT} = 5.5V	0.0			0.5		5.0		10	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				T _A = 25°C		C	T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Condi	Test Conditions		Тур	Max	Min	Max	Min	Мах	Unit
tPLH, tPHL	Maximum Propogation Delay,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.5 5.8	10.0 13.5		11.0 15.0		13.0 17.5	ns
	Input A or B to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.0 3.8	6.7 7.7		7.5 8.5		8.5 9.5	
C _{IN}	Maximum Input Capacitance				5.5	10		10		10	pF
						Ту	pical @	25°C, V	CC = 5.0	V	
C _{PD}	Power Dissipation Capa	acitance (Note 1.)					11				pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

	Device Nomenclature								
Device Order Number	Circuit Indicator	Temp Range Identifier	Tech– nology	Input Type	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1GT02DFT1	MC	74	VHC1G	Т	02	DF	T1	SC88A/ SOT353	7–Inch/3000 Unit

Inverting Buffer / CMOS Logic Level Shifter with LSTTL-Compatible Inputs

The MC74VHC1GT04 is a single gate inverting buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device input is compatible with TTL-type input thresholds and the output has a full 5V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0V CMOS logic to 5.0V CMOS Logic or from 1.8V CMOS logic to 3.0V CMOS Logic while operating at the high-voltage power supply.

The MC74VHC1GT04 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1GT04 to be used to interface 5V circuits to 3V circuits. The output structures also provide protection when $V_{CC} = 0V$. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

- High Speed: $t_{PD} = 3.8 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL–Compatible Inputs: $V_{IL} = 0.8V$; $V_{IH} = 2.0V$
- CMOS–Compatible Outputs: V_{OH} > 0.8V_{CC}; V_{OL} < 0.1V_{CC} @Load
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 1500V; MM > 200V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT						
1	NC					
2	IN A					
3	GND					
4	OUT Y					
5	VCC					

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 80 of this data sheet.

FUNCTION TABLE

Y Output
Н
L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	IOK	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC–88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	0.0 0.0	5.5 V _{CC}	V
Operating Temperature Range	Т _А	-55	+85	°C
Input Rise and Fall Time $\begin{array}{ll} V_{CC} = 3.3V \pm 0.3V \\ V_{CC} = 5.0V \pm 0.5V \end{array}$	t _r , t _f	0 0	100 20	ns/V

			Vcc	ר	A = 25°	С	T _A ≤	85°C	TA ≤ ²	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Max	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		3.0 4.5 5.5	1.4 2.0 2.0			1.4 2.0 2.0		1.4 2.0 2.0		V
VIL	Maximum Low–Level Input Voltage		3.0 4.5 5.5			0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V
VOH	Minimum High–Level Output Voltage	V _{IN} = V _{IH} or V _{IL} I _{OH} = –50µA	3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V
	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$	3.0 4.5		0.0 0.0	0.1 0.1		0.1 0.1		0.1 0.1	V
	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
IIN	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
ICCT	Quiescent Supply Current	Input: V _{IN} = 3.4V	5.5			1.35		1.50		1.65	mA
IOPD	Output Leakage Current	V _{OUT} = 5.5V	0.0			0.5		5.0		10	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

			$T_{A} = 25^{\circ}C \qquad T_{A} \le 85^{\circ}C \qquad T_{A} \le 125^{\circ}C$								
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Мах	Unit
tplh, tphl	Maximum Propogation Delay,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		5.0 6.2	10.0 13.5		11.0 15.0		13.0 17.5	ns
	Input A to \overline{Y}	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.8 4.2	6.7 7.7		7.5 8.5		8.5 9.5	
C _{IN}	Maximum Input Capacitance				5	10		10		10	рF
Typical @ 25°C, V _{CC} = 5.0V									v		
C _{PD}	Power Dissipation Capa	acitance (Note 1.)						10			pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

*Includes all probe and jig capacitance

Figure 2. Switching Waveforms

			Device N	lomencl	ature	-	-		
Device Order Number	Circuit Indicator	Temp Range Identifier	Tech– nology	Input Type	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1GT04DFT1	MC	74	VHC1G	т	04	DF	T1	SC88A/ SOT353	7–Inch/3000 Unit

Schmitt-Trigger Inverter / CMOS Logic Level Shifter with LSTTL-Compatible Inputs

The MC74VHC1GT14 is a single gate CMOS Schmitt-trigger inverter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device input is compatible with TTL-type input thresholds and the output has a full 5V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0V CMOS logic to 5.0V CMOS Logic or from 1.8V CMOS logic to 3.0V CMOS Logic while operating at the high-voltage power supply.

The MC74VHC1GT14 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1GT14 to be used to interface 5V circuits to 3V circuits. The output structures also provide protection when $V_{CC} = 0V$. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc. The MC74VHC1GT14 can be used to enhance noise immunity or to square up slowly changing waveforms.

- High Speed: $t_{PD} = 4.5 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL–Compatible Inputs: $V_{IL} = 0.8V$; $V_{IH} = 2.0V$
- CMOS–Compatible Outputs: V_{OH}>0.8V_{CC}; V_{OL}<0.1V_{CC} @Load
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA

LOGIC SYMBOL

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT
1	NC
2	IN A
3	GND
4	OUT Y
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 84 of this data sheet.

FUNCTION TABLE

Y Output
Н
L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	IOK	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V_{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC–88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC--88A Package: -5 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	VOUT	0.0	VCC	V
Operating Temperature Range	Т _А	-55	+85	°C

			Vcc	ר	A = 25°	2	T _A ≤	85°C	TA ≤ '	125°C	
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Max	Min	Max	Unit
V _{T+}	Positive Threshold Voltage		3.0 4.5 5.5	1.20 1.58 1.79	1.40 1.74 1.94	1.60 2.00 2.10		1.6 2.0 2.0		1.6 2.0 2.0	V
V _T -	Negative Threshold Voltage		3.0 4.5 5.5	0.35 0.5 0.6	0.76 1.01 1.13	0.93 1.18 1.29	0.35 0.5 0.6		0.35 0.5 0.6		V
V _H	Hysteresis Voltage		3.0 4.5 5.5	0.30 0.40 0.50	0.64 0.73 0.81	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	0.30 0.40 0.50	1.20 1.40 1.60	V
VOH	Minimum High–Level Output Voltage I _{OH} = –50µA	VIN = VIH or VIL IOH = -50µA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		I _{OH} = -4mA I _{OH} = -8mA	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu \text{A}$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
IIN	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
ICCT	Quiescent Supply Current	Input: V _{IN} = 3.4V	5.5			1.35		1.50		1.65	mA
IOPD	Output Leakage Current	V _{OUT} = 5.5V	0.0			0.5		5.0		10	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r/t_f = 3.0 \text{ ns}$)

			T _A = 25°C			T _A ≤ 85°C		T _A ≤ 125°C			
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PLH, ^t PHL	Maximum Propogation Delay, A	$V_{CC} = 3.3 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		7.0 8.4	12.8 16.3	1.0 1.0	15.0 18.5	1.0 1.0	17.0 20.5	ns
	to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		4.5 5.8	8.6 10.6	1.0 1.0	10.0 12.0	1.0 1.0	11.5 13.5	
C _{IN}	Maximum Input Capacitance				5	10		10		10	pF

Cop Power Dissipation Capacitance (Note 1)			Typical @ 25°C, V _{CC} = 5.0V	
	C _{PD}	Power Dissipation Capacitance (Note 1.)	10	pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC}(OPR) = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

*Includes all probe and jig capacitance

Figure 2. Switching Waveforms

			Device N	lomencl	ature	-	-		
Device Order Number	Circuit Indicator	Temp Range Identifier	Tech– nology	Input Type	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1GT14DFT1	MC	74	VHC1G	т	14	DF	T1	SC88A/ SOT353	7–Inch/3000 Unit

Noninverting Buffer / CMOS Logic Level Shifter with LSTTL-Compatible Inputs

The MC74VHC1GT50 is a single gate noninverting buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device input is compatible with TTL-type input thresholds and the output has a full 5V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0V CMOS logic to 5.0V CMOS Logic or from 1.8V CMOS logic to 3.0V CMOS Logic while operating at the high-voltage power supply.

The MC74VHC1GT50 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1GT50 to be used to interface 5V circuits to 3V circuits. The output structures also provide protection when $V_{CC} = 0V$. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

- High Speed: $t_{PD} = 3.5 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL–Compatible Inputs: $V_{IL} = 0.8V$; $V_{IH} = 2.0V$
- CMOS–Compatible Outputs: V_{OH}>0.8V_{CC}; V_{OL}<0.1V_{CC} @Load
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 1500V; MM > 200V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT
1	NC
2	IN A
3	GND
4	OUT Y
5	VCC

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 88 of this data sheet.

FUNCTION TABLE

A Input	Y Output
L	L
Н	Н

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	ЮК	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V _{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC–88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC--88A Package: -3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	0.0 0.0	5.5 V _{CC}	V
Operating Temperature Range	Т _А	-55	+85	°C
Input Rise and Fall Time V_{CC} = 3.3V ± 0.3V V_{CC} = 5.0V ± 0.5V	t _r , t _f	0 0	100 20	ns/V

			Vcc	ר	A = 25°	С	T _A ≤	85°C	T _A ≤ 125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Мах	Min	Мах	Unit
VIH	Minimum High–Level Input Voltage		3.0 4.5 5.5	1.4 2.0 2.0			1.4 2.0 2.0		1.4 2.0 2.0		V
VIL	Maximum Low–Level Input Voltage		3.0 4.5 5.5			0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V
VOH	Minimum High–Level Output Voltage	V _{IN} = V _{IH} or V _{IL} I _{OH} = –50µA	3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V
	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
VOL	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$	3.0 4.5		0.0 0.0	0.1 0.1		0.1 0.1		0.1 0.1	V
	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
IIN	Maximum Input Leakage Current	V_{IN} = 5.5V or GND	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
ICCT	Quiescent Supply Current	Input: V _{IN} = 3.4V	5.5			1.35		1.50		1.65	mA
IOPD	Output Leakage Current	V _{OUT} = 5.5V	0.0			0.5		5.0		10	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

		Test Conditions		Г	T _A = 25°C		T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter			Min	Тур	Max	Min	Max	Min	Мах	Unit
tplh, tphl	Maximum Propogation Delay,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		4.5 6.3	10.0 13.5		11.0 15.0		13.0 17.5	ns
	Input A to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.5 4.3	6.7 7.7		7.5 8.5		8.5 9.5	
C _{IN}	Maximum Input Capacitance				5	10		10		10	pF
							pical @	25°C, V	CC = 5.0	v	
C _{PD}	Power Dissipation Capa	acitance (Note 1.)					12				pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC} \cdot C_{PD}$ is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

	Device Nomenclature								
Device Order Number	Circuit Indicator	Temp Range Identifier	Tech– nology	Input Type	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1GT50DFT1	MC	74	VHC1G	т	50	DF	T1	SC88A/ SOT353	7–Inch/3000 Unit

Advance Information Analog Switch

The MC74VHC1GT66 is an advanced high speed CMOS bilateral analog switch fabricated with silicon gate CMOS technology. It achieves high speed propagation delays and low ON resistances while maintaining CMOS low power dissipation. This bilateral switch controls analog and digital voltages that may vary across the full power–supply range (from V_{CC} to GND).

The MC74VHC1GT66 is compatible in function to a single gate of the very High Speed CMOS MC74VHCT4066. The device has been designed so that the ON resistances (R_{ON}) are much lower and more linear over input voltage than R_{ON} of the metal–gate CMOS or High Speed CMOS analog switches.

The ON/OFF Control input is compatible with TTL-type input thresholds allowing the device to be used as a logic-level translator from 3.0V CMOS logic to 5.0V CMOS logic or from 1.8V CMOS logic to 3.0V CMOS logic while operating at the high-voltage power supply. The input protection circuitry on this device allows overvoltage tolerance on the input, which provides protection when voltages of up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1GT66 to be used to interface 5V circuits to 3V circuits.

- Low Power Dissipation: $I_{CC} = 2 \mu A$ (Max) at $T_A = 25^{\circ}C$
- Diode Protection Provided on Inputs and Outputs
- Improved Linearity and Lower ON Resistance over Input Voltage
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; MM > 200 V, CDM > 1500 V

5-Lead SOT-353 Pinout (Top View)

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

	PIN ASSIGNMENT									
1	IN/OUT X _A									
2	OUT/IN Y _A									
3	GND									
4	ON/OFF CONTROL									
5	VCC									

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 95 of this data sheet.

FUNCTION TABLE

State of Analog Switch
Off
On

© Semiconductor Components Industries, LLC, 1999 November, 1999 – Rev. 2

ABSOLUTE MAXIMUM RATINGS

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
Digital Input Voltage	VIN	-0.5 to V _{CC} +0.5	V
Analog Output Voltage	V _{IS}	–0.5 to V _{CC} + 0.5	V
Digital Input Diode Current	IК	-20	mA
DC Supply Current, V_{CC} and GND	ICC	+25	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	TL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

†Derating — SC–88A Package: –3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
Digital Input Voltage	V _{IN}	GND	V _{CC}	V
Analog Input Voltage	VIS	GND	VCC	V
Static or Dynamic Voltage Across Switch	V _{IO} *		1.2	V
Operating Temperature Range	TA	-55	+85	°C
Input Rise and Fall Time ON/OFF Control Input $V_{CC} = 3.3V \pm 0.3V$ $V_{CC} = 5.0V \pm 0.5V$	t _r , t _f	0	100 20	ns/V

* For voltage drops across the switch greater than 1.2V (switch on), excessive V_{CC} current may be drawn; i.e. the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC ELECTRICAL CHARACTERISTICS

			Vcc	T _A = 25°C			T _A ≤	85°C	$T_{A} \leq 125^{\circ}C$		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Мах	Min	Max	Unit
VIH	Minimum High–Level Input Voltage ON/OFF Control Input	R _{ON} = Per Spec	3.0 4.5 5.5	1.2 2.0 2.0			1.2 2.0 2.0		1.2 2.0 2.0		V
VIL	Maximum Low–Level Input Voltage ON/OFF Control Input	R _{ON} = Per Spec	3.0 4.5 5.5			0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V
IIN	Maximum Input Leakage Current ON/OFF Control Input	$V_{IN} = V_{CC}$ or GND	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC} \text{ or GND}$ $V_{IO} = 0V$	5.5			2.0		20		40	μΑ
ICCT	Quiescent Supply Current	ON/OFF Control at 3.4V	5.5			1.35		1.5		1.65	mA
R _{ON}	Maximum "ON" Resistance	$V_{IN} = V_{IH}$ $V_{IS} = V_{CC}$ or GND $ I_{IS} \le 10$ mA (Figure 1)	3.0 4.5 5.5		30 20 15	50 30 20		70 40 35		100 50 45	Ω
		$ \begin{array}{l} \mbox{Endpoints} \\ \mbox{V}_{IN} = \mbox{V}_{IH} \\ \mbox{V}_{IS} = \mbox{V}_{CC} \mbox{ or } \mbox{GND} \\ \mbox{ I}_{IS} \mbox{ } \le 10 \mbox{mA} \mbox{(Figure 1)} \end{array} $	3.0 4.5 5.5		25 12 8	50 20 15		65 26 23		90 40 32	Ω
IOFF	Maximum Off–Channel Leakage Current	$V_{IN} = V_{IL}$ $V_{IS} = V_{CC}$ or GND Switch Off (Figure 2)	5.5			0.1		0.5		1.0	μA
ION	Maximum On–Channel Leakage Current	$V_{IN} = V_{IH}$ $V_{IS} = V_{CC}$ or GND Switch On (Figure 3)	5.5			0.1		0.5		1.0	μA

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_f/t_f = 3.0 \text{ns}$)

			Vcc	ר	Γ _A = 25°	C	T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PLH, ^t PHL	Maximum Propogation Delay, Input X to Y	Y _A = Open Figure 4	2.0 3.0 4.5 5.5		1 0 0 0	5 2 1 1		6 3 1 1		7 4 2 1	ns
^t PLZ [,] ^t PHZ	Maximum Propogation Delay, ON/OFF Control to Analog Output	RL = 1000 Ω Figure 5	2.0 3.0 4.5 5.5		15 8 6 4	35 15 10 7		46 20 13 9		57 25 17 11	ns
^t PZL, ^t PZH	Maximum Propogation Delay, ON/OFF Control to Analog Output	R _L = 1000 Ω Figure 5	2.0 3.0 4.5 5.5		15 8 6 4	35 15 10 7		46 20 13 9		57 25 17 11	ns
C _{IN}	Maximum Input	ON/OFF Control Input	0.0		3	10		10		10	pF
	Capacitance	Contol Input = GND Analog I/O Feedthrough	5.0		4	10 10		10 10		10 10	
							nical @	25°C V		N I	

		Typical @ 25°C, V _{CC} = 5.0V	
C _{PD}	Power Dissipation Capacitance (Note NO TAG)	18	pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Symbol	Parameter	Test Conditions	vcc	Limit 25°C	Unit
BW	Maximum On–Channel Bandwidth or Minimum Frequency Response Figure 7	$ \begin{array}{l} f_{in} = 1 \mbox{ MHz Sine Wave} \\ \mbox{Adjust } f_{in} \mbox{ voltage to obtain 0 dBm at } V_{OS} \\ \mbox{Increase } f_{in} = \mbox{frequency until dB meter reads } -3\mbox{dB} \\ \mbox{R}_L = 50\Omega, \mbox{C}_L = 10 \mbox{ pF} \end{array} $	3.0 4.5 5.5	150 175 200	MHz
ISO _{off}	Off–Channel Feedthrough Isolation Figure 8		3.0 4.5 5.5	50 50 50	dB
		f _{in} = 1.0 kHz, R _L = 50Ω, C _L = 10 pF	3.0 4.5 5.5	-40 -40 -40	
NOISE _{feed}	Feedthrough Noise Control to Switch Figure 9		3.0 4.5 5.5	45 60 130	mVPP
		R _L = 50Ω, C _L = 10 pF	3.0 4.5 5.5	25 30 60	
THD	Total Harmonic Distortion Figure 10	$ f_{in} = 1 \text{ kHz}, \text{ R}_L = 10 \text{k}\Omega, \text{ C}_L = 50 \text{ pF} \\ THD = THD_{Measured} - THD_{Source} \\ V_{IS} = 3.0 \text{ Vpp sine wave} \\ V_{IS} = 4.0 \text{ Vpp sine wave} \\ V_{IS} = 5.0 \text{ Vpp sine wave} \\ $	3.3 4.5 5.5	0.20 0.10 0.06	%

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} $\bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

Figure 2. Maximum Off–Channel Leakage Current Test Set–Up

÷

Figure 4. Propagation Delay Test Set-Up

Figure 6. Power Dissipation Capacitance Test Set–Up

Figure 7. Maximum On–Channel Bandwidth Test Set–Up

Figure 8. Off–Channel Feedthrough Isolation Test Set–Up

Figure 11. Propagation Delay, Analog In to Analog Out Waveforms

Figure 10. Total Harmonic Distortion Test Set–Up

Figure 12. Propagation Delay, ON/OFF Control

	Device Nomenclature							
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1GT66DFT1	MC	74	VHC1G	T66	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

2-Input Exclusive OR Gate / CMOS Logic Level Shifter with LSTTL-Compatible Inputs

The MC74VHC1GT86 is an advanced high speed CMOS 2–input Exclusive OR gate fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device input is compatible with TTL-type input thresholds and the output has a full 5V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0V CMOS logic to 5.0V CMOS Logic or from 1.8V CMOS logic to 3.0V CMOS Logic while operating at the high-voltage power supply.

The MC74VHC1GT86 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1GT86 to be used to interface 5V circuits to 3V circuits. The output structures also provide protection when $V_{CC} = 0V$. These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

- High Speed: $t_{PD} = 4.8 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- TTL–Compatible Inputs: $V_{IL} = 0.8V$; $V_{IH} = 2.0V$
- CMOS–Compatible Outputs: V_{OH}>0.8V_{CC}; V_{OL}<0.1V_{CC} @Load
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA
- ESD Performance: HBM > 2000V; MM > 200V, CDM > 1500V

Figure 1. 5-Lead SOT-353 Pinout (Top View)

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT							
1	IN B						
2	IN A						
3	GND						
4	OUT Y						
5	VCC						

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 99 of this data sheet.

FUNCTION TABLE

Inp	uts	Output
А	В	Y
L	L	L
L	н	Н
Н	L	Н
Н	Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V
DC Input Voltage	VIN	-0.5 to +7.0	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	-0.5 to 7.0 -0.5 to V _{CC} + 0.5	V
Input Diode Current	Iк	-20	mA
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	IOK	+20	mA
DC Output Current, per Pin	IOUT	+25	mA
DC Supply Current, V _{CC} and GND	ICC	+50	mA
Power dissipation in still air, SC-88A †	PD	200	mW
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C
Storage temperature	T _{stg}	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC-88A Package: -3 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	4.5	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage V _{CC} = 0 High or Low State	Vout	0.0 0.0	5.5 V _{CC}	V
Operating Temperature Range	Т _А	-55	+85	°C
Input Rise and Fall Time V_{CC} = 3.3V ± 0.3V V_{CC} = 5.0V ± 0.5V	t _r , t _f	0 0	100 20	ns/V

			Vcc	ר	A = 25°	С	T _A ≤	85°C	T _A ≤ 125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Мах	Min	Мах	Unit
VIH	Minimum High–Level Input Voltage		3.0 4.5 5.5	1.2 2.0 2.0			1.2 2.0 2.0		1.2 2.0 2.0		V
VIL	Maximum Low–Level Input Voltage		3.0 4.5 5.5			0.53 0.8 0.8		0.53 0.8 0.8		0.53 0.8 0.8	V
VOH	Minimum High–Level Output Voltage	V _{IN} = V _{IH} or V _{IL} I _{OH} = –50µA	3.0 4.5	2.9 4.4	3.0 4.5		2.9 4.4		2.9 4.4		V
VIN = VIH or VIL	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V	
VOL	Maximum Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$	3.0 4.5		0.0 0.0	0.1 0.1		0.1 0.1		0.1 0.1	V
	VIN = VIH or VIL	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
IIN	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA
ICCT	Quiescent Supply Current	Input: V _{IN} = 3.4V	5.5			1.35		1.50		1.65	mA
IOPD	Output Leakage Current	V _{OUT} = 5.5V	0.0			0.5		5.0		10	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

				T _A = 25°C		C	T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PLH, ^t PHL	Maximum Propogation Delay,	$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		5.0 6.2	11.0 14.5		13.0 16.5		15.5 19.5	ns
	Input A or B to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		3.1 4.2	6.8 8.8		8.0 10.0		10.0 12.0	
C _{IN}	Maximum Input Capacitance				5.5	10		10		10	pF
	Typical @ 25°C, V _{CC} = 5.0V						DV	-			
C _{PD}	Power Dissipation Cap	Power Dissipation Capacitance (Note 1.)						11			pF

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} $\bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Figure 2. Switching Waveforms

Device Order Number	Circuit Indicator	Temp Range Identifier	Tech– nology	Input Type	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1GT86DFT1	MC	74	VHC1G	т	86	DF	T1	SC88A/ SOT353	7–Inch/3000 Unit

Unbuffered Inverter

The MC74VHC1GU04 is an advanced high speed CMOS Unbuffered inverter fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

This device consists of a single unbuffered inverter. In combination with others, or in the MC74VHCU04 Hex Unbuffered Inverter, these devices are well suited for use as oscillators, pulse shapers, and in many other applications requiring a high–input impedance amplifier. For digital applications, the MC74VHC1G04 or the MC74VHC04 are recommended.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The MC74VHC1GU04 input structure provides protection when voltages up to 7V are applied, regardless of the supply voltage. This allows the MC74VHC1GU04 to be used to interface 5V circuits to 3V circuits.

- High Speed: $t_{PD} = 2.5 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300mA

Figure 1. 5-Lead SOT-353 Pinout (Top View)

LOGIC SYMBOL

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

SC-88A / SOT-353 DF SUFFIX CASE 419A

MARKING DIAGRAM

PIN ASSIGNMENT							
1	NC						
2	IN A						
3	GND						
4	OUT T						
5	VCC						

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 103 of this data sheet.

FUNCTION TABLE

A Input	Y Output
L	Н
Н	L

MAXIMUM RATINGS*

Characteristics	Symbol	Value	Unit		
DC Supply Voltage	V _{CC}	-0.5 to +7.0	V		
DC Input Voltage	VIN	-0.5 to +7.0	V		
DC Output Voltage V _{CC} = 0 High or Low State	Vout	−0.5 to 7.0 −0.5 to V _{CC} + 0.5	V		
Input Diode Current	Iк	I _{IK} –20			
Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$	lok	+20	mA		
DC Output Current, per Pin	IOUT	+25	mA		
DC Supply Current, V_{CC} and GND	ICC	+50	mA		
Power dissipation in still air, SC-88A †	PD	200	mW		
Lead temperature, 1 mm from case for 10 s	ΤL	260	°C		
Storage temperature	T _{stg}	-65 to +150	°C		

* Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.

†Derating — SC--88A Package: -5 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Characteristics	Symbol	Min	Max	Unit
DC Supply Voltage	VCC	2.0	5.5	V
DC Input Voltage	VIN	0.0	5.5	V
DC Output Voltage	Vout	0.0	VCC	V
Operating Temperature Range	TA	-55	+85	°C
Input Rise and Fall Time $$V_{CC}$=3.3V\pm0.3V$\\ V_{CC}=5.0V\pm0.5V$$	t _r ,t _f	0 0	No Limit No Limit	ns/V

			Vcc	T _A = 25°C			T _A ≤ 85°C		T _A ≤ 125°C		
Symbol	Parameter	Test Conditions	(V)	Min	Тур	Мах	Min	Мах	Min	Max	Unit
VIH	Minimum High–Level Input Voltage		2.0 3.0 4.5 5.5	1.7 2.4 3.6 4.4			1.7 2.4 3.6 4.4		1.7 2.4 3.6 4.4		V
VIL	Maximum Low–Level Input Voltage		2.0 3.0 4.5 5.5			0.3 0.6 0.9 1.1		0.3 0.6 0.9 1.1		0.3 0.6 0.9 1.1	V
Vон	Minimum High–Level Output Voltage V _{IN} = V _{IH} or V _{IL}	VIN = VIH or VIL IOH = -50µA	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4mA$ $I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Maximum Low–Level Output Voltage VIN = VIH or VIL	VIN = VIH or VIL IOL = 50µA	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		V _{IN} = V _{IH} or V _{IL} I _{OL} = 4mA I _{OL} = 8mA	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	V
I _{IN}	Maximum Input Leakage Current	$V_{IN} = 5.5V \text{ or GND}$	0 to 5.5			±0.1		±1.0		±1.0	μA
ICC	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND	5.5			2.0		20		40	μA

DC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_r = t_f = 3.0 \text{ns}$)

			T _A = 25°C		0	T _A ≤ 85°C		$T_{A} \leq 125^{\circ}C$			
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Min	Max	Unit
tPLH, Maximum tPHL Propogation Delay,		$V_{CC} = 3.0 \pm 0.3 V$	C _L = 15 pF C _L = 50 pF		3.5 4.8	8.9 11.4		10.5 13.0		12.0 15.5	ns
	Input A to Y	$V_{CC} = 5.0 \pm 0.5 V$	C _L = 15 pF C _L = 50 pF		2.5 3.8	5.5 7.0		6.5 8.0		8.0 9.5	
C _{IN}	Maximum Input Capacitance				4	10		10		10	pF
						Ту	pical @	25°C, V	CC = 5.0	DV V	
Срп	Power Dissipation Car	pacitance (Note 1.)						22			рF

 CPD
 Power Dissipation Capacitance (Note 1.)
 22
 pF

 1. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR)=CPD • VCC • fin+ICC. CPD is used to determine the no-load dynamic power consumption; PD = CPD • VCC² • fin + ICC • VCC.

Figure 2. Switching Waveforms

*Includes all probe and jig capacitance

Figure 3. Test Circuit

Device Nomenclature								
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape & Reel Suffix	Package Type	Tape and Reel Size
MC74VHC1GU04DFT1	MC	74	VHC1G	U04	DF	T1	SC-88A / SOT-353	7–Inch/3000 Unit

Application Notes

AND8004/D

ON Semiconductor Logic Date Code and Traceability Marking

Douglas Buzard, Logic Product Engineering

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

APPLICATION NOTE

Introduction

This is a summary of ON Semiconductor Logic Device, Date Code, and Traceability Marking. We want to provide our customers with easy access to this information on the web. This applications note summarizes and explains the Date Code and Traceability Marking for Logic packages. This is not intended to replace the proper documentation. To properly decode the Logic marking you need 12MRH00191A ON Semiconductor marking spec and S.O.P. 7–19 ID of Products to Location of Test/ Assy/Wafer Fab. Also, you need to know the abbreviations used for Logic products(see the appropriate Logic datasheet for the specific device naming/ordering information).

Device Marking

Logic Families

The standard Logic abbreviations are:

U		
LS	=	Low Power Schottky Logic
14xxx	=	Metal Gate CMOS Logic
HC, HCT	=	High Speed CMOS Logic
AC, ACT, JLC	=	FACT - Fairchild Advanced CMOS Technology
VHC, VHCT	=	Very High Speed CMOS Logic
LVX, LVXT	=	Low-Voltage Very High Speed CMOS
LCX	=	Low-Voltage CMOS Logic
ALVC, VCX	=	Advanced Low-Voltage CMOS Logic

Logic Packages

The standard Logic package suffixes are: N = Plastic Dual-In-Line P = Metal Gate CMOS Plastic Dual-In-Line D = SOIC Narrow Body DW = SOIC Wide Body F = EIAJ Plastic Mini Flat Pack M = EIAJ Plastic Mini Flat Pack DT = TSSOP DF = SOT-353/363 or SC-88A/SC-88

All of the above except DF, F, and M can be combined with an R2 suffix for tape and reel. The tape and reel suffixes for EIAJ Plastic Mini Flat Pack include EL, L1, L2, F1, F2 depending upon the type of tape and the orientation of the part in the tape pocket. The DF package can be combined with a T1 or T2 tape and reel suffix that specifies the orientation of the part in the tape pocket.

AND8004/D

Device Marking

Typical Device naming in Logic consists of the following:

* 1	U	0	U		
Brand	Temp rating	Logic family	Logic function	Package	Tape and reel
MC	74	VHC	T138A	DT	R2

Plastic dual-in-line packages and larger SOIC packages can accommodate the entire device name excluding the tape and reel suffix.

Smaller package types with limited space on package for marking are either truncated or abbreviated. The SOT packages use a code for the Logic family and device type.

On TSSOP and some SOIC, the device name will be truncated by removing the MC74 prefix, and any package suffixes.

Example: Marking — Device HC04A = MC74HC04ADR2

Marking — Device LCX 244 = MC74LCX244DTR2

Marking — Device VL = MC74VHC1GT50DFT1

PC/XC Device Marking

New Prototype "PC" devices and new pre-production release, pre-reliability "XC" devices:

P = PC

X = XC

The first character is the "PC" or "XC" identifier. For a variety of reasons, the remaining characters have not been standardized for different engineering devices. On these devices the date code will be the most important item.

AND8004/D

Date and Traceability Code Markings

TSSOP Packages

8 Id TSSOP = "YWW" front side and "AWL" back side

```
"Y" - The First code is 2 characters and indicates the Year Assembled.
"WW" - The Second & Third code is 2 characters and indicates the Work Week Assembled.
XXXX = Part number
643 = "YWW" front side
6|| = 1996
43 = WW43
"A" - The First code is 1 or 2 characters indicating the Assembly Location
"WL" - The Second & Third code is 2 characters and indicates the Wafer Lot Tracking Code.
XAA = "AWL" back side
X|| = ASE Chung-Li, Taiwan. Assy Location.(S.O.P.7-19)
AA = First Lot Assembled for that Device Type in that (Work Week).
14/16/20/24 Id TSSOP = "AWLYWW"
"A" - The First code is 1 or 2 characters indicating the Assembly Location
"WL" - The Second & Third code is 2 characters and indicates the Wafer Lot Tracking Code.
    - The Fourth code is 2 characters and indicates the Year Assembled.
"Y"
"WW" - The Fifth & Sixth code is 2 characters and indicates the Work Week Assembled.
VHCT
244A = MC74VHCT244ADT
XAA643 = "AWLYWW"
```

XAA643 = "AWLYWW"
|||||
X||||| = ASE Chung-Li, Taiwan. Assy Location.(S.O.P.7-19)
|||||
AA||| = First Lot Assembled for that Device Type in that (Work Week).
|||
6|| = 1996
||
43 = WW43

48/56 Id TSSOP = "AWLYYWW"

"A" - The First code is 1 or 2 characters indicating the Assembly Location. "WL" - The Second & Third code is 2 characters and indicates the Wafer Lot Tracking Code. "YY" - The Fourth & Fifth code is 2 characters and indicates the Year Assembled. "WW" - The Sixth & Seventh code is 2 characters and indicates the Work Week Assembled. MC74LCX16244 = MC74LCX16244DT PAA9646 = "AWLYYWW" ||||||| P|||||| = ON Semiconductor Carmona, Philippines. Assy Location.(S.O.P.7-19) |||||| AA|||| = First Lot Assembled for that Device Type in that (Work Week). |||| 96|| = 1996 || 46 = WW46
SOT Packages

5 Id SOT-353/SC-88A

PACKAGE	DEVICE MARKING	DATE CODE	LOGO	POLARITY BAND
HEIGHT	HEIGHT	HEIGHT	HEIGHT	
SMC	.040"060"	.040"060"	.040"060"	N/A

Figure 1 illustrates the marking format for SOT–353, and SC88A devices. The laser marking is to appear on the top of the package and be oriented per Figure 1A.

"ABC" illustrates toe location of the Device Code which is specified below and by the device 48A. "D" illustrates the location of the Date Code.

DATE CODES:

SOT-23, SC59, SC596L, TSOP6, SC70, SC706L, SC90, SOD123, SOD323, POWERMITE, SC88A, SOT-353, AND SOT143

MONT	H DATE	E CODE	MONTI	H DATE	CODE	MONT	I DATE	CODE	MONT	'H DATE	CODE
1994	JAN FEB MAR APR JUN JUL AUG SEP OCT NOV DEC	Y Z C D E F G H I J K L	1995	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	M N O P R T U V 9 X Y Z	1996	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	E F H J K L N P U X Y Z	1997	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1 2 3 4 5 6 7 8 9 T V C
1998	JAN FEB MAR APR JUN JUL AUG SEP OCT NOV DEC	E F H J K L N P U X Y Z	1999	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1 2 3 4 5 6 7 8 9 T V C	2000	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	E F H J K L N P U X Y Z	2001	JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	1 2 3 4 5 6 7 8 9 T V C

DEVICE CODES:

SOT-23, SC59, SC88A, SOT-353

Family	ID	HSL	:	Η		
		VHC	:	V	&	W
		LCX	:	L		
		ALVC	:	С	&	D

Device Fur	nction				
FUNC	C ID	HSL	VHC	LCX	ALVC
00	1	Hl	V1	L1	C1
T00	H	-	VH	-	-
01	0		V0		C0
02	3	Н3	V3	Г3	C3
T02	J	-	VJ	-	
03	P		VP		CP
04	5	Н5	V5	L5	C5
Т04	K	-	VK	-	
U04	6	Нб	Vб	Lб	C6
05	F		VF		CF
07	7		V7		
08	2	Н2	V2	L2	C2
T08	Т	-	VT	-	
09	Х		VX		CX
14	A	HA	VA	LA	CA
T14	С	-	VC	-	
32	4	Н4	V4	L4	C4
Т32	N	-	VN	-	
50	R	-	VR	-	CR
Т50	L	-	VL	-	-
54	V	-	VV	-	
Т54	W	-	VW	-	
66	9	-	V9	L9	C9
Т66	E	-	VE	Гð	
86	8	Н8	V8	L8	C8
Т8б	М	-	VM	-	
132	D	-	VD	-	CD
T132	U	-	VU	-	
135	Z	-	VZ	-	CZ

SOIC Packages

8 Id SOIC = "ALYW"

"A" - The First character indicates the location of Assembly Location.

"L" - The Second character indicates the Wafer Lot Tracking Code.

"Y" – The Third character indicate an "ALPHA CODE" of the Year assembled.

"W" - The Fourth character indicate an "ALPHA CODE" of the Work Week assembled.

The "Y" YEAR Alpha Codes are:

A = 1989 First	6 months,	WW01 - WW26
B = 1989 Second	6 months,	WW27 - WW52
C = 1990 First	6 months,	WW01 - WW26
D = 1990 Second	6 months,	WW27 – WW52
E = 1991 First	6 months,	WW01 - WW26
F = 1991 Second	6 months,	WW27 - WW52
G = 1992 First	6 months,	WW01 - WW26
H = 1992 Second	6 months,	WW27 - WW52
I = 1993 First	6 months,	WW01 - WW26
J = 1993 Second	6 months,	WW27 – WW52
K = 1994 First	6 months,	WW01 - WW26
L = 1994 Second	6 months,	WW27 - WW52
M = 1995 First	6 months,	WW01 - WW26
N = 1995 Second	6 months,	WW27 - WW52
O = 1996 First	6 months,	WW01 - WW26
P = 1996 Second	6 months,	WW27 – WW52
Q = 1997 First	6 months,	WW01 - WW26
R = 1997 Second	6 months,	WW27 – WW52
S = 1998 First	6 months,	WW01 - WW26
T = 1998 Second	6 months,	WW27 – WW52
U = 1999 First	6 months,	WW01 - WW26
V = 1999 Second	6 months,	WW27 – WW52
W = 2000 First	6 months,	WW01 - WW26
X = 2000 Second	6 months,	WW27 – WW52
Y = 2001 First	6 months,	WW01 - WW26
Z = 2001 Second	6 months,	WW27 – WW52

The "W" Work Week Alpha Codes are:

First 6 months	Second 6 months
<u>WW01 - WW26</u>	<u>WW27 - WW52</u>
A = 01	A = 27
$\mathbf{B} = 02$	A = 27 $B = 28$
	$\mathbf{C} = 29$
C = 03 $D = 04$	C = 29 $D = 30$
E = 05	E = 31
$\mathbf{F} = 06$	F = 32
G = 07	G = 33
$\mathbf{H} = 08$	H = 34
I = 09	I = 35
J = 10	J = 36
K = 11	K = 37
L = 12	L = 38
M = 13	M = 39
N = 14	N = 40
O = 15	O = 41
P = 16	P = 42
Q = 17	Q = 43
R = 18	R = 44
S = 19	S = 45
T = 20	T = 46
U = 21	U = 47
V = 22	V = 48
W = 23	W = 49
X = 24	X = 50
Y = 25	Y = 51
Z = 26	Z = 52
= =	

From this information you can determine the date codes: Examples:

PANS, P||| = ON Semiconductor Carmona, Philippines. Assy Location.(S.O.P.7-19) A|| = First Lot Assembled for that Device Type in that Alpha Code (Work Week). N = 1995 Second 6 months, WW27 - WW52 S = WW45 (Y95 WW45)XBST, X||| = ASE Chung-Li, Taiwan. Assy Location.(S.O.P. 7-19) B|| = Second Lot Assembled for that Device Type in that Alpha Code (Work Week). S = 1998 First 6 months, WW01 - WW26 T = WW20 (Y98 WW20)

AND8004/D

14/16 Id SOIC Narrow Body = "AWLYWW"

"A" - The First code is 1 or 2 characters indicating the Assembly Location "WL" - The Second & Third code is 2 characters and indicates the Wafer Lot Tracking Code. "Y" - The Fourth code is 2 characters and indicates the Year Assembled. "WW" - The Fifth & Sixth code is 2 characters and indicates the Work Week Assembled. LCX00 = MC74LCX00D XAA643 = "AWLYWW" |||||| X||||| = ASE Chung-Li, Taiwan. Assy Location.(S.O.P.7-19) ||||| AA||| = First Lot Assembled for that Device Type in that (Work Week). ||| 6|| = 1996 || 43 = WW43

16/20/24 Id SOIC Wide Body = "AWLYYWW"

```
"A" - The First code is 1 or 2 characters indicating the Assembly Location.
"WL" - The Second & Third code is 2 characters and indicates the Wafer Lot Tracking Code.
"YY" - The Fourth & Fifth code is 2 characters and indicates the Year Assembled.
"WW" - The Sixth & Seventh code is 2 characters and indicates the Work Week Assembled.
```

```
VHCT244A = MC74VHCT244ADW
PAA9646 = "AWLYYWW"
|||||||
P|||||| = ON Semiconductor Carmona, Philippines. Assy Location.(S.O.P.7-19)
||||||
AA|||| = First Lot Assembled for that Device Type in that (Work Week).
||||
96|| = 1996
||
46 = WW46
```

EIAJ Mini Flat Pack Packages

8/14/16 Id MFP = "ALYW"

"A" - The First character indicates the location of Assembly Location.

"L" - The Second character indicates the Wafer Lot Tracking Code.

"Y" – The Third character indicate an "ALPHA CODE" of the Year assembled.

"W" - The Fourth character indicate an "ALPHA CODE" of the Work Week assembled.

The "Y" YEAR Alpha Codes are:

A = 1989 First	6 months,	WW01 - WW26
B = 1989 Second	6 months,	WW27 - WW52
C = 1990 First	6 months,	WW01 - WW26
D = 1990 Second	6 months,	WW27 – WW52
E = 1991 First	6 months,	WW01 - WW26
F = 1991 Second	6 months,	WW27 - WW52
G = 1992 First	6 months,	WW01 - WW26
H = 1992 Second	6 months,	WW27 - WW52
I = 1993 First	6 months,	WW01 - WW26
J = 1993 Second	6 months,	WW27 – WW52
K = 1994 First	6 months,	WW01 - WW26
L = 1994 Second	6 months,	WW27 – WW52
M = 1995 First	6 months,	WW01 - WW26
N = 1995 Second	6 months,	WW27 – WW52
O = 1996 First	6 months,	WW01 - WW26
P = 1996 Second	6 months,	WW27 – WW52
Q = 1997 First	6 months,	WW01 - WW26
R = 1997 Second	6 months,	WW27 – WW52
S = 1998 First	6 months,	WW01 - WW26
T = 1998 Second	6 months,	WW27 – WW52
U = 1999 First	6 months,	WW01 - WW26
V = 1999 Second	6 months,	WW27 – WW52
W = 2000 First	6 months,	WW01 - WW26
X = 2000 Second	6 months,	WW27 – WW52
Y = 2001 First	6 months,	WW01 - WW26
Z = 2001 Second	6 months,	WW27 - WW52

The "W" Work Week Alpha Codes are:

First 6 months	Second 6 months
<u>WW01 - WW26</u>	<u>WW27 - WW52</u>
A = 01	A = 27
$\mathbf{B} = 02$	A = 27 $B = 28$
	$\mathbf{C} = 29$
C = 03 $D = 04$	C = 29 $D = 30$
E = 05	E = 31
$\mathbf{F} = 06$	F = 32
G = 07	G = 33
$\mathbf{H} = 08$	H = 34
I = 09	I = 35
J = 10	J = 36
K = 11	K = 37
L = 12	L = 38
M = 13	M = 39
N = 14	N = 40
O = 15	O = 41
P = 16	P = 42
Q = 17	Q = 43
R = 18	R = 44
S = 19	S = 45
T = 20	T = 46
U = 21	U = 47
V = 22	V = 48
W = 23	W = 49
X = 24	X = 50
Y = 25	Y = 51
Z = 26	Z = 52
= =	

From this information you can determine the date codes: Examples:

PANS, P||| = ON Semiconductor Carmona, Philippines. Assy Location.(S.O.P.7-19) A|| = First Lot Assembled for that Device Type in that Alpha Code (Work Week). N = 1995 Second 6 months, WW27 - WW52 S = WW45 (Y95 WW45)XBST, X||| = ASE Chung-Li, Taiwan. Assy Location.(S.O.P. 7-19) B|| = Second Lot Assembled for that Device Type in that Alpha Code (Work Week). S = 1998 First 6 months, WW01 - WW26 T = WW20 (Y98 WW20)

AND8004/D

20 Id MFP = "AWLYWW"

"A" - The First code is 1 or 2 characters indicating the Assembly Location "WL" - The Second & Third code is 2 characters and indicates the Wafer Lot Tracking Code. "Y" - The Fourth code is 2 characters and indicates the Year Assembled. "WW" - The Fifth & Sixth code is 2 characters and indicates the Work Week Assembled. LVX240 = MC74LVX240M XAA643 = "AWLYWW" |||||| X||||| = ASE Chung-Li, Taiwan. Assy Location.(S.O.P.7-19) ||||| AA||| = First Lot Assembled for that Device Type in that (Work Week). ||| 6|| = 1996 || 43 = WW43

AND8004/D

Plastic Dual-In-Line(PDIP) Packages

8 Id PDIP = "AWL" and "YYWW"

```
XXXX = Part number
XAA = "AWL"
9643 = "YYWW"
"A" - The First code is 1 or 2 characters indicating the Assembly Location
"WL" - The Second & Third code is 2 characters and indicates the Wafer Lot Tracking Code.
"YY" - The Fourth & Fifth code is 2 characters and indicates the Year Assembled.
"WW" - The Sixth & Seventh code is 2 characters and indicates the Work Week Assembled.
XAA = "AWL"
X = ASE Chung-Li, Taiwan. Assy Location. (S.O.P.7-19)
AA = First Lot Assembled for that Device Type in that (Work Week).
9643 = "YYWW"
96 | = 1996
 43 = WW43
14/16/18/20/24 Id PDIP = "AWLYYWW"
"A" - The First code is 1 or 2 characters indicating the Assembly Location
"WL" - The Second & Third code is 2 characters and indicates the Wafer Lot Tracking Code.
"YY" - The Fourth & Fifth code is 2 characters and indicates the Year Assembled.
"WW" - The Sixth & Seventh code is 2 characters and indicates the Work Week Assembled.
MC74HC00AN
           = MC74HC00AN
CPAA9646 = "AWLYYWW"
ZR|||||| = AAPI Manila, Philippines. Assy Location.(S.O.P.7-19)
  DK ||| = Lot Assembled for that Device Type in that (Work Week).
   99 | | = 1998
```

```
02 = WW02

MC74HCT244AN = MC74HCT244AN

CPAA9646 = "AWLYYWW"

|||||||

CP|||||| = Astra(AMT) Batam Island, Indonesia. Assy Location.(S.O.P.7-19)

|||||

AA|||| = First Lot Assembled for that Device Type in that (Work Week).

||||

98|| = 1998

||

21 = WW21
```

APPENDIX 1 – Assembly Location Codes

Codes	s used in the previous pages to denot	e assembly site location.	
В	ON SEMI PHX	PHOENIX, ARIZONA (52ND ST)
BG	PANTRONIX, INC	SAN JOSE, CALIFORNIA	
C	CARSEM (M) (old plant)	IPOH, MALAYSIA	
CB	PHENITEC / TOREX (T/T)		
		IBARA, JAPAN	
СК	ASE (M) OR ASE	PENANG, MALAYSIA	or "1" for SOIC 8 LD
			or smaller packages
CM	ON SEMI MSL	SINGAPORE	
CP	ASTRA (AMT)	BATAM ISLAND, INDONESIA	or "2" for SOIC 8 LD
			or smaller packages
CV	MITSUI SHAH ALAM (MSA)	SHAH ALAM, MALAYSIA	
DJ	CARSEM (S) (new plant)	IPOH, MALAYSIA	or "3" for SOIC 8 LD
			or smaller packages
DQ	SMP (SEMICONDUCTOR	SEREMBAN, MALAYSIA ON SE	EMI–PHILIPS JOINT VENTURE
	MINIATURE PRODUCTS)		
DX	ANAM K3 (BUPYUNG)	BUPYUNG, KOREA	
F	ON SEMI MPI	MANILA, PHILIPPINES	
Ι	ANAM K1 (HWAYANG–DONG)	SEOUL, KOREA	
J	ON SEMI NML	AIZU, JAPAN	
Κ	*ASE-MKL	SEOUL, KOREA	
MC	AMD (Assembly)	BANGKOK, THAILAND	
MD	AMD (Test)	PENANG, MALAYSIA	
MI	CHARTERED SEMICONDUCTORS	SINGAPORE	
MX	MITSUI-KUMAMOTO (formerly KIKU)		
	TAIWAN LITEON ELEC)	KUMAMOTOKEN, JAPAN	
ND	TOSHIBA IWATE	IWATE-KITAKAMI, JAPAN	
NL	TESLA–SEZAM	ROSNOV, CZECH REPUBLIC	
NP	TOSHIBA OHITA	OHITA–KITAKYUSHU, JAPAN	
NR	LANSDALE	TEMPE, ARIZONA	
P	ON SEMI MPC	CARMONA, PHILIPPINES	
PR	AAP3	LAGUNA, PHILIPPINES	
QW	ASE (P)	MANILA, PHILIPPINES	or "1" for SOIC 8 LD
Q	ASE (I)	WANEA, I IILII I INES	or smaller packages
R	ON SEMI SBN	SEREMBAN, MALAYSIA	of smaller packages
SB	ANAM K4 (KWANG JU)	KWANG JU, KOREA	
SE	BEST ELECTRONICS (BECCI)	METRO MANILA, PHILIPPINES	
TE	STM	SINGAPORE	
TF	*SLOVAKIAN ELECTRONICS	PIESTANY, SLOVAKIA INC.	
V	ON SEMI SBN II	SEREMBAN, MALAYSIA	
W	ON SEMI GDL	GUADALAJARA, MEXICO	
X	*ASE-METL	CHUNG–LI, TAIWAN	
ZK	ASE (K) OR ASE	KAOHSIUNG, TAIWAN	
ZQ	ANAM K2 (BUCHON)	BUCHON, KOREA	
ZR	AAP1 (FORMERLY: AAPI)	MANILA PHILIPPINES	or "5" for SOIC 8 LD
			or smaller packages
ZS	MITSUI HI-TECH (MHT)	FUKUOKA–KUROSAKI, JAPAN	[
ZV	AAP2 (FORMERLY: AME)	MANILA, PHILIPPINES	

NOTE: THE SINGLE DIGIT NUMBER ASSIGNED TO SOME SUBCONTRACTORS IS TO BE USED FOR MARKING PURPOSES ONLY, WHEN PACKAGE SIZE IS VERY SMALL.

* Indicates an addition or a change

One–Gate Logic Tape & Reel and Package Specifications

TAPE & REEL SPECIFICATIONS

Figure 1. Carrier Tape Specifications

Tape Size	B ₁ Max	D	D ₁	E	F	к	Р	P ₀	P ₂	R	т	w
8 mm	4.35 mm (0.171″)	1.5 +0.1/ -0.0 mm (0.059 +0.004/ -0.0")	1.0 mm Min (0.039″)	1.75 ±0.1 mm (0.069 ±0.004")	3.5 ±0.5 mm (1.38 ±0.002")	2.4 mm (0.094")	4.0 ±0.10 mm (0.157 ±0.004")	4.0 ±0.1 mm (0.156 ±0.004")	2.0 ±0.1 mm (0.079 ±0.002″)	25 mm (0.98″)	0.3 ±0.05 mm (0.01 +0.0038/ -0.0002")	8.0 ±0.3 mm (0.315 ±0.012")

1. Metric Dimensions Govern-English are in parentheses for reference only.

2. A₀, B₀, and K₀ are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity

Figure 2. Reel Dimensions

REEL DIMENSIONS

Tape Size	A Max	G	t Max
8 mm	330 mm	8.400 mm, +1.5 mm, -0.0	14.4 mm
	(13")	(0.33", +0.059", -0.00)	(0.56″)

User Direction of Feed

Figure 5. Reel Configuration

CASE OUTLINE AND PACKAGE DIMENSIONS

SC-88A / SOT-353 **DF SUFFIX** 5-LEAD PACKAGE CASE 419A-01 ISSUE B

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MM.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
Ν	0.008 REF		0.20 REF	
S	0.079	0.087	2.00	2.20
V	0.012	0.016	0.30	0.40

ON SEMICONDUCTOR WORLDWIDE SALES OFFICES

UNITED STATES

ALABAMA	
Huntsville	5)464–6800
CALIFORNIA Irvine (949	
San Jose (408	3)749–0510
COLORADO	
Denver	3)337–3434
FLORIDA	
St. Petersberg (813	3)524–4177
GEORGIA	
Atlanta (770	0)338–3810
ILLINOIS	
Chicago (847	7)413–2500
MASSACHUSETTS	
Boston	1)932–9700
MICHIGAN	
Detroit	3)347–6800
MINNESOTA	
Minnetonka (612	2)932–1500
NORTH CAROLINA Raleigh(919	0\870_4355
PENNSYLVANIA	9)070-4333
Philadelphia/Horsham (215	5)957–4100
TEXAS	
Dallas (972	2)516–5100

CANADA

CANADA
ONTARIO
Ottawa
QUEBEC
Montreal
Monarea
INTERNATIONAL
BRAZIL
Sao Paulo 55(011)3030–5244
CHINA
Beijing 86–10–65642288
Guangzhou
Shanghai
FRANCE
Paris
GERMANY
Munich
HONG KONG
Hong Kong 852–2–610–6888
INDIA

. 91–80–5598615
. 972–9–9522333
39(02)82201

INTERNATIONAL (continued)

KOREA
Seoul 82–2–3440–7200
MALAYSIA
Penang 60(4)228–2514
MEXICO
Guadalajara 52(36)78–0750
PHILIPPINES
Manila
PUERTO RICO
San Juan
SINGAPORE
Singapore
SPAIN
Madrid
or
SWEDEN
Stockholm
TAIWAN
Taipei
THAILAND
Bangkok
UNITED KINGDOM
Aylesbury 44 1 (296)395252

ON SEMICONDUCTOR STANDARD DOCUMENT TYPE DEFINITIONS

REFERENCE MANUAL

A Reference Manual is a publication that contains a comprehensive system or device–specific description of the structure and function (operation) of a particular part/system; used overwhelmingly to describe the functionality of a microprocessor, microcontroller, or some other sub–micron sized device. Procedural information in a Reference Manual is limited to less than 40 percent (usually much less).

USER'S GUIDE

A User's Guide contains procedural, task–oriented instructions for using or running a device or product. A User's Guide differs from a Reference Manual in the following respects:

- * Majority of information (> 60%) is procedural, not functional, in nature
- * Volume of information is typically less than for Reference Manuals
- * Usually written more in active voice, using second-person singular (you) than is found in Reference Manuals
- * May contain photographs and detailed line drawings rather than simple illustrations that are often found in Reference Manuals

POCKET GUIDE

A Pocket Guide is a pocket-sized document that contains technical reference information. Types of information commonly found in pocket guides include block diagrams, pinouts, alphabetized instruction set, alphabetized registers, alphabetized third-party vendors and their products, etc.

ADDENDUM

A documentation Addendum is a supplemental publication that contains missing information or replaces preliminary information in the primary publication it supports. Individual addendum items are published cumulatively. Addendums end with the next revision of the primary document.

APPLICATION NOTE

An Application Note is a document that contains real-world application information about how a specific ON Semiconductor device/product is used with other ON Semiconductor or vendor parts/software to address a particular technical issue. Parts and/or software must already exist and be available.

A document called "Application-Specific Information" is not the same as an Application Note.

SELECTOR GUIDE

A Selector Guide is a tri-fold (or larger) document published on a regular basis (usually quarterly) by many, if not all, divisions, that contains key line-item, device-specific information for particular product families. Some Selector Guides are published in book format and contain previously published information.

PRODUCT PREVIEW

A Product Preview is a summary document for a product/device under consideration or in the early stages of development. The Product Preview exists only until an "Advance Information" document is published that replaces it. The Product Preview is often used as the first section or chapter in a corresponding reference manual. The Product Preview displays the following disclaimer at the bottom of the first page: "ON Semiconductor reserves the right to change or discontinue this product without notice."

ADVANCE INFORMATION

The Advance Information document is for a device that is NOT fully MC–qualified. The Advance Information document is replaced with the Technical Data document once the device/part becomes fully MC–qualified. The Advance Information document displays the following disclaimer at the bottom of the first page: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

TECHNICAL DATA

The Technical Data document is for a product/device that is in full production (i.e., fully released). It replaces the Advance Information document and represents a part that is M, X, XC, or MC qualified. The Technical Data document is virtually the same document as the Product Preview and the Advance Information document with the exception that it provides information that is unavailable for a product in the early phases of development (such as complete parametric characterization data). The Technical Data document is also a more comprehensive document that either of its earlier incarnations. This document displays no disclaimer, and while it may be informally referred to as a "data sheet," it is not labeled as such.

ENGINEERING BULLETIN

An Engineering Bulletin is a writeup that typically focuses on a single specific solution for a particular engineering or programming issue involving one or several devices.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other: applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC product application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

 EUROPE:
 LDC for ON Semiconductor - European Support

 German
 Phone:
 (+1)
 303-308-7140
 (M-F 2:30pm to 5:00pm Munich Time)

 Email:
 ONlit.german@hibbertco.com

 French
 Phone:
 (+1)
 303-308-7141
 (M-F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibertco.com English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time)

English Phone: (+1) 303-308-7142 (M-F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm Hong Kong Time) Toll Free from Hong Kong 800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549 Phone: 81-3-5740-2745 Email: 114525@onsemi.com

Fax Response Line: 303-675-2167 800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales $\ensuremath{\mathsf{Representative}}$