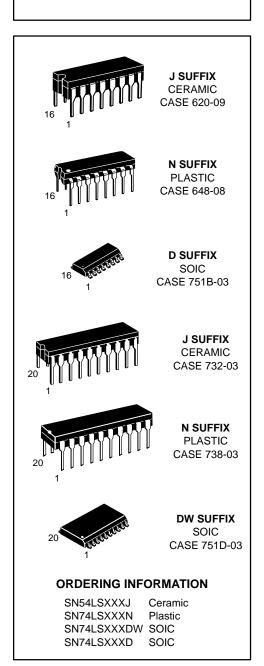


QUAD 2-PORT REGISTER

The SN54/74LS398 and SN54/74LS399 are Quad 2-Port Registers. They are the logical equivalent of a quad 2-input multiplexer followed by a quad 4-bit edge-triggered register. A Common Select input selects between two 4-bit input ports (data sources). The selected data is transferred to the output register on the LOW-to-HIGH transition of the Clock input. The SN54/74LS398 features both Q and Q inputs, while the SN54/74LS399 has only Q outputs.

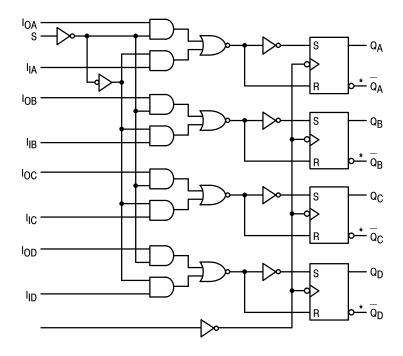
- Select From Two Data Sources
- Fully Positive Edge-Triggered Operation
- Both True and Complemented Outputs on SN54/74LS398
- Input Clamp Diodes Limit High-Speed Termination Effects

PIN NAMES LOADING (Note a) HIGH LOW S Common Select Input 0.5 U.L. 0.25 U.L. CP Clock (Active HIGH Going Edge) Input 0.5 U.L. 0.25 U.L. Data Inputs From Source 0 0.5 U.L. 0.25 U.L. $I_{0a}-I_{0d}$ $I_{1a}-I_{0d}$ Data Inputs From Source 1 0.5 U.L. 0.25 U.L. Register True Outputs (Note b) 10 U.L. 5 (2.5) U.L. $Q_a - Q_d$ $Q_a - Q_d$ Register Complementary Outputs (Note b) 10 U.L. 5 (2.5) U.L.


NOTES:

- a) 1 TTL Unit Load (U.L.) = $40 \mu A HIGH/1.6 mA LOW$.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS398 SN54/74LS399


QUAD 2-PORT REGISTER

LOW POWER SCHOTTKY

SN54/74LS398 • SN54/74LS399

FUNCTIONAL BLOCK DIAGRAM

* SN54/74LS398 only

FUNCTIONAL DESCRIPTION

The SN54/74LS398 and SN54/74LS399 are high-speed Quad 2-Port Registers. They select four bits of data from two sources (Ports) under the control of a common Select Input (S). The selected data is transferred to a 4-Bit Output Register synchronous with the LOW-to-HIGH transition of the Clock in-

put (CP). The 4-Bit RS type output register is fully edge-triggered. The Data inputs (I) and Select inputs (S) must be stable only a setup time prior to and hold time after the LOW-to-HIGH transition of the Clock input for predictable operation. The SN54/74LS398 has both Q and Q Outputs available.

FUNCTION TABLE

	INPUTS	OUTPUTS		
S	I ₀	l ₁	Q	Q*
I	- 1	Х	L	Н
I	h	Х	Н	L
h	Х	I	L	Н
h	Х	h	Н	L

^{*}SN54/74LS398 only

I = LOW Voltage Level one setup time pior to the LOW-to-HIGH clock transition

 $\label{eq:hamilton} h = HIGH \ \mbox{Voltage Level one setup time prior to the LOW-to-HIGH clock transition}$

L = LOW Voltage Level

H = HIGH Voltage Level

X = Immaterial

SN54/74LS398 • SN54/74LS399

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
I _{ОН}	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions	
V _{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
\/	V Larry LOW Valle				0.7	V	Guaranteed Input	: LOW Voltage for
V _{IL}	Input LOW Voltage	74			0.8	V	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA	
V	Output HIGH Voltage	54	2.5	3.5		٧	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table	
VOH		74	2.7	3.5		٧		
Val	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
1	Innut I IICI I Current				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
l ¹iH	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _I L	Input LOW Current	W Current			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX	
ICC	Power Supply Current				13	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

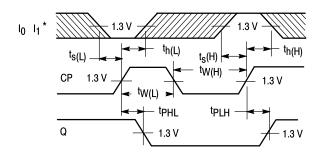
AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$)

		Limits		Limits		
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tPLH tPHL	Propagation Delay, Clock to Output Q		18 21	27 32	ns	V _{CC} = 5.0 V C _L = 15 pF

SN54/74LS398 • SN54/74LS399

AC SETUP REQUIREMENTS ($T_A = 25$ °C)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
t₩	Clock Pulse Width	20			ns		
t _S	Data Setup Time	25			ns	V 50V	
t _S	Select Setup Time	45			ns	V _{CC} = 5.0 V	
t _h	Hold Time, Any Input	0			ns		


DEFINITIONS OF TERMS

SETUP TIME(t_S) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.

HOLD TIME(th) — is defined as the minimum time following

the clock transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative Hold Time indicates that the correct logic level may be released prior to the clock transition from LOW-to-HIGH and still be recognized.

AC WAVEFORMS

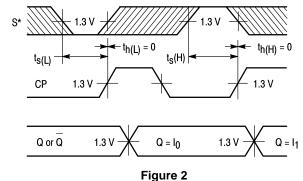
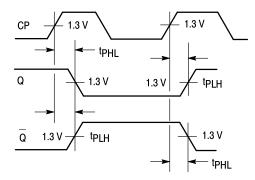
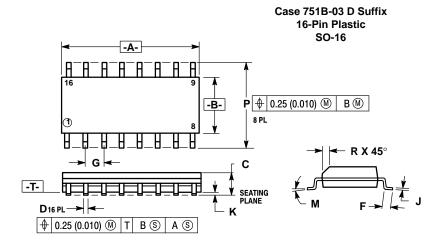
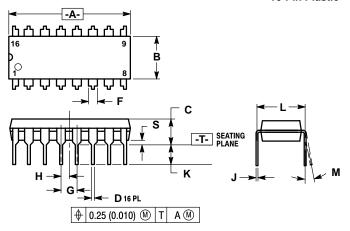
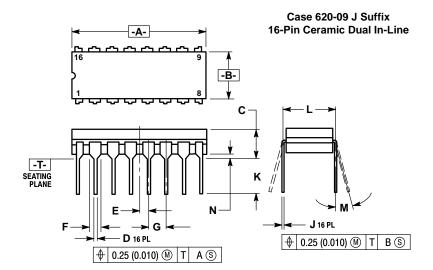


Figure 1


Figure 3

^{*}The shaded areas indicate when the input is permitted to change for predictable output performance.

Case 648-08 N Suffix 16-Pin Plastic

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE. 751B-01 IS OBSOLETE, NEW STANDARD 751B-03.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION "L" TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
- DIMENSION "B" DOES NOT INCLUDE MOLD
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD

	MILLIM	ETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	18.80	19.55	0.740	0.770		
В	6.35	6.85	0.250	0.270		
С	3.69	4.44	0.145	0.175		
D	0.39	0.53	0.015	0.021		
F	1.02	1.77	0.040	0.070		
G	2.54	BSC	0.100 BSC			
Н	1.27	BSC	0.050	BSC		
J	0.21	0.38	0.008	0.015		
K	2.80	3.30	0.110	0.130		
L	7.50	7.74	0.295	0.305		
M	0°	10°	0°	10°		
S	0.51	1.01	0.020	0.040		

- OTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD 620.09
- 620-09.

	MILLIM	ETERS	INC	HES				
DIM	MIN	MAX	MIN	MAX				
Α	19.05	19.55	0.750	0.770				
В	6.10	7.36	0.240	0.290				
С	_	4.19	_	0.165				
D	0.39	0.53	0.015	0.021				
E	1.27	BSC	0.050 BSC					
F	1.40	1.77	0.055	0.070				
G	2.54	BSC	0.100 BSC					
J	0.23	0.27	0.009	0.011				
K	_	5.08	_	0.200				
L	7.62 BSC		0.300 BSC					
M	0°	15°	0°	15°				
N	0.39	0.88	0.015	0.035				

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

