

# 4-BIT SHIFT REGISTER WITH 3-STATE OUTPUTS

The SN74LS395 is a 4-Bit Register with 3-state outputs and can operate in either a synchronous parallel load or a serial shift-right mode, as determined by the Select input. An asynchronous active LOW Master Reset (MR) input overrides the synchronous operations and clears the register. An active HIGH Output Enable (OE) input controls the 3-state output buffers, but does not interfere with the other operations. The fourth stage also has a conventional output for linking purposes in multi-stage serial operations.

- Shift Left or Parallel 4-Bit Register
- 3-State Outputs
- Input Clamp Diodes Limit High-Speed Termination Effects



| PIN NAMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                        | G (Note a)                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HIGH                                                                                                   | LOW                                                                                             |
| $\begin{array}{c cccc} D_{S} & Serial Data Input & (C_{S} & Mode Select Input & (C_{P} & Clock (Active LOW) Input & (C_{P} & Clock (Active LOW) Input & (C_{P} & Clock (Active LOW) Input & (C_{P} & Output Enable (Active HIGH) Input & (C_{P} & Output Enable ($ | 0.5 U.L.<br>0.5 U.L.<br>0.5 U.L.<br>0.5 U.L.<br>0.5 U.L.<br>0.5 U.L.<br>0.5 U.L.<br>65 U.L.<br>10 U.L. | 0.25 U.L.<br>0.25 U.L.<br>0.25 U.L.<br>0.25 U.L.<br>0.25 U.L.<br>0.25 U.L.<br>15 U.L.<br>5 U.L. |

NOTES:

a) 1 TTL Unit Load (U.L.) = 40  $\mu A$  HIGH/1.6 mA LOW.

SN74LS395

### 4-BIT SHIFT REGISTER WITH 3-STATE OUTPUTS

LOW POWER SCHOTTKY





### LOGIC DIAGRAM



### FUNCTION DESCRIPTION

The SN74LS395 contains four D-type edge-triggered flip-flops and auxiliary gating to select a D input either from a Parallel (P<sub>n</sub>) input or from the preceding stage. When the Select input is HIGH, the P<sub>n</sub> inputs are enabled. A LOW signal on the S input enables the serial inputs for shift-right operations, as indicated in the Truth Table.

State changes are initiated by HIGH-to-LOW transitions on the Clock Pulse (CP) input. Signals on the  $P_n$ ,  $D_s$  and S inputs can change when the Clock is in either state, provided that the recommended set-up and hold times are observed. When the

S input is LOW, a CP HIGH-LOW transition transfers data in  $Q_0$  to  $Q_1$ ,  $Q_1$  to  $Q_2$ , and  $Q_2$  to  $Q_3$ . A left-shift is accomplished by connecting the outputs back to the  $P_n$  inputs, but offset one place to the left, i.e.,  $O_3$  to  $P_2$ ,  $O_2$  to  $P_1$  and  $O_1$  to  $P_0$ , with  $P_3$  acting as the linking input from another package.

When the OE input is HIGH, the output buffers are disabled and the  $Q_0-Q_3$  outputs are in a high impedance condition. The shifting, parallel loading or resetting operations can still be accomplished, however.

|                                              | Inputs @ t <sub>n</sub> |       |        |        |         | Outputs @ t <sub>n+1</sub> |                       |                       |                                   |
|----------------------------------------------|-------------------------|-------|--------|--------|---------|----------------------------|-----------------------|-----------------------|-----------------------------------|
| Operating Mode                               | MR                      | СР    | s      | Ds     | Pn      | 0 <sub>0</sub>             | 0 <sub>1</sub>        | 0 <sub>2</sub>        | 0 <sub>3</sub>                    |
| Asynchronous Reset<br>Shift, SET First Stage | L<br>H                  | ×     | X<br>L | X<br>H | X<br>X  | L<br>H                     | L<br>O <sub>0n</sub>  | L<br>O <sub>1n</sub>  | L<br>O <sub>2n</sub>              |
| Shift, RESET First Stage<br>Parallel Load    | H<br>H                  | لے لے | LH     | L<br>X | X<br>Pn | L<br>P <sub>0</sub>        | O <sub>0n</sub><br>P1 | O <sub>1n</sub><br>P2 | O <sub>2n</sub><br>P <sub>3</sub> |

### MODE SELECT — TRUTH TABLE

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

 $t_{n, n+1}$  = time before and after CP HIGH-to-LOW transition

NOTE:\_\_\_

When OE is HIGH, outputs  $O_0 - O_3$  are in the high impedance state; however, this does not affect other operations or the  $Q_3$  output.

#### **GUARANTEED OPERATING RANGES**

| Symbol          | Parameter                           | Min  | Тур | Max  | Unit |
|-----------------|-------------------------------------|------|-----|------|------|
| V <sub>CC</sub> | Supply Voltage                      | 4.75 | 5.0 | 5.25 | V    |
| ТА              | Operating Ambient Temperature Range | 0    | 25  | 70   | °C   |
| ЮН              | Output Current — High               |      |     | -0.4 | mA   |
| I <sub>OL</sub> | Output Current — Low                |      |     | 8.0  | mA   |

# SN74LS395

|                 |                                            |         |     | Limits |      |      |                                                                                     |                                     |
|-----------------|--------------------------------------------|---------|-----|--------|------|------|-------------------------------------------------------------------------------------|-------------------------------------|
| Symbol          | Parameter                                  |         | Min | Тур    | Max  | Unit | Test Conditions                                                                     |                                     |
| VIH             | Input HIGH Voltage                         |         | 2.0 |        |      | V    | Guaranteed Input HIGH Voltage for<br>All Inputs                                     |                                     |
| VIL             | Input LOW Voltage                          |         |     |        | 0.8  | V    | Guaranteed Input LOW Voltage for<br>All Inputs                                      |                                     |
| VIK             | Input Clamp Diode Volt                     | age     |     | -0.65  | -1.5 | V    | $V_{CC} = MIN, I_{IN} =$                                                            | -18 mA                              |
| V <sub>OH</sub> | Output HIGH Voltage                        |         | 2.7 | 3.5    |      | V    | $V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH}$<br>or V <sub>IL</sub> per Truth Table |                                     |
|                 | Output LOW Voltage                         |         |     | 0.25   | 0.4  | V    | I <sub>OL</sub> = 4.0 mA                                                            | $V_{CC} = V_{CC} MIN,$              |
| VOL             |                                            |         |     | 0.35   | 0.5  | V    | I <sub>OL</sub> = 8.0 mA                                                            | VIN = VIL or VIH<br>per Truth Table |
| IOZH            | Output Off Current HIG                     | Н       |     |        | 20   | μΑ   | V <sub>CC</sub> = MAX, V <sub>O</sub> = 2.4 V                                       |                                     |
| IOZL            | Output Off Current LOV                     | V       |     |        | -20  | μΑ   | $V_{CC} = MAX, V_O$                                                                 | = 0.4 V                             |
| I               |                                            |         |     |        | 20   | μΑ   | V <sub>CC</sub> = MAX, V <sub>IN</sub>                                              | = 2.7 V                             |
| ΙΗ              | Input HIGH Current                         |         |     |        | -0.1 | mA   | $V_{CC} = MAX, V_{IN}$                                                              | = 7.0 V                             |
| ۱ <sub>IL</sub> | Input LOW Current                          |         |     |        | -0.4 | mA   | $V_{CC} = MAX, V_{IN} = 0.4 V$                                                      |                                     |
| IOS             | Short Circuit Current (N                   | lote 1) | -20 |        | -100 | mA   | V <sub>CC</sub> = MAX                                                               |                                     |
|                 | Power Supply Current<br>Total, Output HIGH |         |     |        | 31   | mA   | $V_{CC} = MAX, \overline{OE} = GND, \overline{CP} = GND$                            |                                     |
| ICC             | Total, Output LOW                          |         |     |        | 34   | mA   | V <sub>CC</sub> = MAX, OE<br>momentary 3.0 V                                        |                                     |

## DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

# AC CHARACTERISTICS (T<sub>A</sub> = $25^{\circ}$ C)

|                                      |                                                                  |     | Limits   |          |      |                                                   |
|--------------------------------------|------------------------------------------------------------------|-----|----------|----------|------|---------------------------------------------------|
| Symbol                               | Parameter                                                        | Min | Тур      | Max      | Unit | Test Conditions                                   |
| f <sub>MAX</sub>                     | Maximum Input Clock Frequency                                    | 30  | 45       |          | MHz  |                                                   |
| <sup>t</sup> PHL                     | Propagation Delay, Clear to Output                               |     | 22       | 35       | ns   |                                                   |
| <sup>t</sup> PLH<br><sup>t</sup> PHL | Propagation Delay, Low to High<br>Propagation Delay, High to Low |     | 15<br>25 | 30<br>30 | ns   | V <sub>CC</sub> = 5.0 V<br>C <sub>L</sub> = 15 pF |
| <sup>t</sup> PZH<br><sup>t</sup> PZL | Output Enable Time                                               |     | 15<br>17 | 25<br>25 | ns   |                                                   |
| <sup>t</sup> PLZ<br><sup>t</sup> PHZ | Output Disable Time                                              |     | 12<br>11 | 20<br>17 | ns   | C <sub>L</sub> = 5.0 pF                           |

# AC SETUP REQUIREMENTS (T<sub>A</sub> = $25^{\circ}$ C)

|                |                         | Limits |     |     |      |                         |
|----------------|-------------------------|--------|-----|-----|------|-------------------------|
| Symbol         | Parameter               | Min    | Тур | Max | Unit | Test Conditions         |
| tW             | Clock Pulse Width       | 16     |     |     | ns   |                         |
| t <sub>s</sub> | Setup Time, Mode Select | 40     |     |     | ns   |                         |
| t <sub>S</sub> | Setup Time, All Others  | 20     |     |     | ns   | V <sub>CC</sub> = 5.0 V |
| th             | Data Hold Time          | 10     |     |     | ns   |                         |

# SN74LS395

### AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.



\*The Data Input is  $D_S$  for S = LOW and  $P_n$  for S = HIGH.

Figure 1







Figure 3



Figure 4



SWITCH POSITIONS

| SYMBOL           | SW1    | SW2    |
|------------------|--------|--------|
| <sup>t</sup> PZH | Open   | Closed |
| <sup>t</sup> PZL | Closed | Open   |
| <sup>t</sup> PLZ | Closed | Closed |
| <sup>t</sup> PHZ | Closed | Closed |

\* Includes Jig and Probe Capacitance.

Figure 5

AC LOAD CIRCUIT

Case 751B-03 D Suffix **16-Pin Plastic** SO-16



Case 648-08 N Suffix **16-Pin Plastic** 





- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD 2 3.
- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 4.
- PER SIDE. 751B-01 IS OBSOLETE, NEW STANDARD 751B-03. 5.

|     | MILLIM | ETERS      | INC   | HES   |
|-----|--------|------------|-------|-------|
| DIM | MIN    | MAX        | MIN   | MAX   |
| Α   | 9.80   | 10.00      | 0.386 | 0.393 |
| В   | 3.80   | 4.00       | 0.150 | 0.157 |
| С   | 1.35   | 1.75       | 0.054 | 0.068 |
| D   | 0.35   | 0.49       | 0.014 | 0.019 |
| F   | 0.40   | 1.25       | 0.016 | 0.049 |
| G   | 1.27   | BSC        | 0.050 | BSC   |
| J   | 0.19   | 0.25       | 0.008 | 0.009 |
| K   | 0.10   | 0.25       | 0.004 | 0.009 |
| М   | 0°     | <b>7</b> ° | 0°    | 7°    |
| Р   | 5.80   | 6.20       | 0.229 | 0.244 |
| R   | 0.25   | 0.50       | 0.010 | 0.019 |

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2.
- CONTROLLING DIMENSION: INCH. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 3.
- DIMENSION "B" DOES NOT INCLUDE MOLD 4. FLASH.
- 5.
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD 6. 648-08.

|     | MILLIM | ETERS | INC       | HES   |  |
|-----|--------|-------|-----------|-------|--|
| DIM | MIN    | MAX   | MIN       | MAX   |  |
| Α   | 18.80  | 19.55 | 0.740     | 0.770 |  |
| В   | 6.35   | 6.85  | 0.250     | 0.270 |  |
| С   | 3.69   | 4.44  | 0.145     | 0.175 |  |
| D   | 0.39   | 0.53  | 0.015     | 0.021 |  |
| F   | 1.02   | 1.77  | 0.040     | 0.070 |  |
| G   | 2.54   | BSC   | 0.100 BSC |       |  |
| н   | 1.27   | BSC   | 0.050 BSC |       |  |
| J   | 0.21   | 0.38  | 0.008     | 0.015 |  |
| ĸ   | 2.80   | 3.30  | 0.110     | 0.130 |  |
| L   | 7.50   | 7.74  | 0.295     | 0.305 |  |
| М   | 0°     | 10°   | 0°        | 10°   |  |
| S   | 0.51   | 1.01  | 0.020     | 0.040 |  |

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD 620-09.

- 620-09.

|     | MILLIM | ETERS | INC       | HES   |  |
|-----|--------|-------|-----------|-------|--|
| DIM | MIN    | MAX   | MIN       | MAX   |  |
| Α   | 19.05  | 19.55 | 0.750     | 0.770 |  |
| В   | 6.10   | 7.36  | 0.240     | 0.290 |  |
| С   | _      | 4.19  | —         | 0.165 |  |
| D   | 0.39   | 0.53  | 0.015     | 0.021 |  |
| E   | 1.27   | BSC   | 0.050 BSC |       |  |
| F   | 1.40   | 1.77  | 0.055     | 0.070 |  |
| G   | 2.54   | BSC   | 0.100 BSC |       |  |
| J   | 0.23   | 0.27  | 0.009     | 0.011 |  |
| K   | _      | 5.08  | _         | 0.200 |  |
| L   | 7.62   | BSC   | 0.300     | BSC   |  |
| M   | 0°     | 15°   | 0°        | 15°   |  |
| N   | 0.39   | 0.88  | 0.015     | 0.035 |  |

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and "M" are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

#### Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.



 $\Diamond$