

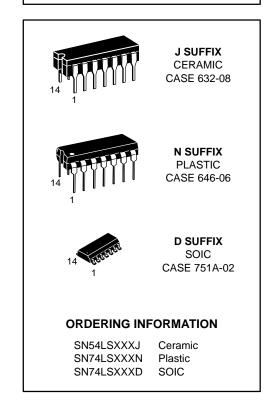
9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

The SN54/74LS280 is a Universal 9-Bit Parity Generator/Checker. It features odd/even outputs to facilitate either odd or even parity. By cascading, the word length is easily expanded.

The LS280 is designed without the expander input implementation, but the corresponding function is provided by an input at Pin 4 and the absence of any connection at Pin 3. This design permits the LS280 to be substituted for the LS180 which results in improved performance. The LS280 has buffered inputs to lower the drive requirements to one LS unit load.

- Generates Either Odd or Even Parity for Nine Data Lines
- Typical Data-to-Output Delay of only 33 ns
- · Cascadable for n-Bits
- Can Be Used To Upgrade Systems Using MSI Parity Circuits
- Typical Power Dissipation = 80 mW

FUNCTION TABLE

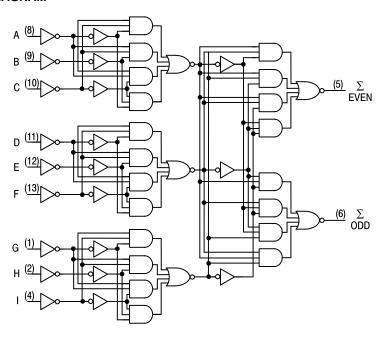

NUMBER OF INPUTS A	OUTPUTS			
THRU 1 THAT ARE HIGH	Σ EVEN	ΣODD		
0, 2, 4, 6, 8	Н	L		
1, 3, 5, 7, 9	L	Н		

H = HIGH Level, L = LOW Level

SN54/74LS280

9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

LOW POWER SCHOTTKY



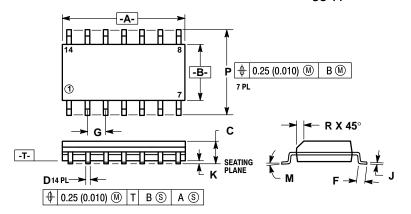
GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
lOH	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

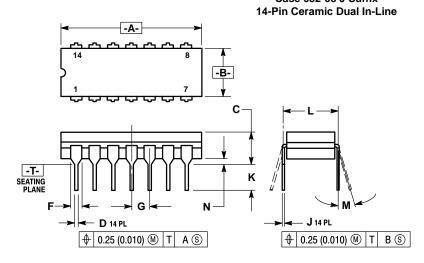
SN54/74LS280

FUNCTIONAL BLOCK DIAGRAM

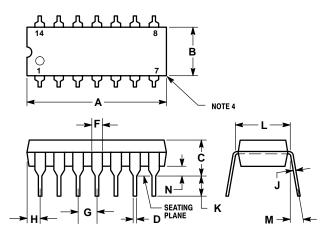
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)


				Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
M.	Innut I OW Voltage	54			0.7	V	Guaranteed Inpu	aranteed Input LOW Voltage for	
V _{IL}	Input LOW Voltage	74			0.8	V	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	٧	V _{CC} = MIN, I _{IN} = -18 mA		
M	Output HIGH Voltage	54	2.5	3.5		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table		
VOH		74	2.7	3.5		V			
Mari	Output I OW Valtage	54, 74		0.25	0.4	٧	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$	
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
1	1				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V		
ΊΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _Ι Γ	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
los	Short Circuit Current (Note	1)	-20		-100	mA	V _{CC} = MAX		
lcc	Power Supply Current				27	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.


AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0 \text{ V}$)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
tPLH tPHL	Propagation Delay, Data to Output ΣEVEN		33 29	50 45	ns	C _L = 15 pF	
tPLH tPHL	Propagation Delay, Data to Output ΣΟDD		23 31	35 50	ns		


Case 751A-02 D Suffix 14-Pin Plastic **SO-14**

Case 632-08 J Suffix

Case 646-06 N Suffix 14-Pin Plastic

NOTES:

- DIMENSIONS "A" AND "B" ARE DATUMS AND
 "T" IS A DATUM SURFACE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- 751A-01 IS OBSOLETE, NEW STANDARD 751A-02.

	MILLIM	ETERS	INCHES		
DIM	MIN MAX		MIN	MAX	
Α	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14-5M, 1982.

 C CONTROLLING DIMENSION: INCH.

 DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

 DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

 5. 632-01 THRU-07 OBSOLETE, NEW STANDARD

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	19.05	19.94	0.750	0.785	
В	6.23	7.11	0.245	0.280	
С	3.94	5.08	0.155	0.200	
D	0.39	0.50	0.015	0.020	
F	1.40	1.65	0.055	0.065	
G	2.54	BSC	0.100 BSC		
J	0.21	0.38	0.008	0.015	
K	3.18	4.31	0.125	0.170	
L	7.62 BSC		0.300	BSC	
M	0°	15°	0°	15°	
N	0.51	1.01	0.020	0.040	

- NOTES:
 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE TO STATE OF THE ST
- FLASH
- ROUNDED CORNERS OPTIONAL. 646-05 OBSOLETE, NEW STANDARD 646-06.

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	18.16	19.56	0.715	0.770	
В	6.10	6.60	0.240	0.260	
С	3.69	4.69	0.145	0.185	
D	0.38	0.53	0.015	0.021	
F	1.02	1.78	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.32	2.41	0.052	0.095	
J	0.20	0.38	0.008	0.015	
K	2.92	3.43	0.115	0.135	
L	7.62	BSC	0.300	BSC	
M	0°	10°	0°	10°	
N	0.39	1.01	0.015	0.039	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

