

DUAL 4-BIT ADDRESSABLE LATCH

The SN54/74LS256 is a Dual 4-Bit Addressable Latch with common control inputs; these include two Address inputs (A0, A1), an active LOW Enable input (E) and an active LOW Clear input (CL). Each latch has a Data input (D) and four outputs $(Q_0 - Q_3)$.

When the Enable (E) is HIGH and the Clear input (CL) is LOW, all outputs $(Q_0 - Q_3)$ are LOW. Dual 4-channel demultiplexing occurs when the (CL) and E are both LOW. When CL is HIGH and E is LOW, the selected output (Q_0-Q_3) , determined by the Address inputs, follows D. When the E goes HIGH, the contents of the latch are stored. When operating in the addressable latch mode (E=LOW, CL=HIGH), changing more than one bit of the Address (A0, A1) could impose a transient wrong address. Therefore, this should be done only while in the memory mode (E=CL=HIGH).

- Serial-to-Parallel Capability
- Output From Each Storage Bit Available
- Random (Addressable) Data Entry
- Easily Expandable
- Active Low Common Clear
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES HIGH 0.5 U.L. A₀, A₁ Address Inputs 0.5 U.L. Da, Db Data Inputs Enable Input (Active LOW) 1.0 U.L. Е CL Clear Input (Active LOW) 0.5 U.L Q_{0a}-Q_{3a}, Q_{0b}-Q_{3b} Parallel Latch Outputs (Note b) 1 NOTES:

a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial

(74) Temperature Ranges.

LOADING (Note a) LOW 0.25 U.L. 0.25 U.L. 0.5 U.L. 0.25 U.L

	0.20 0.2.
0 U.L.	5 (2.5) U.L.

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

SN74LSXXXD SOIC

SN54/74LS256

DUAL 4-BIT

ADDRESSABLE LATCH

SN54/74LS256

LOGIC DIAGRAM

V_{CC} = PIN 16 GND = PIN 8

◯ = PIN NUMBERS

TRUTH TABLE

CL	E	D	A ₀	A ₁	Q ₀	Q ₁	Q ₂	Q3	MODE
L	Н	Х	Х	Х	L	L	L	L	Clear
L	L	L	L	L	L	L	L	L	Demultiplex
L	L	н	L	L	н	L	L	L	
L	L	L	Н	L	L	L	L	L	
L	L	н	Н	L	L	Н	L	L	
L	L	L	L	Н	L	L	L	L	
L	L	н	L	Н	L	L	н	L	
L	L	L	Н	Н	L	L	L	L	
L	L	Н	Н	Н	L	L	L	Н	
Н	Н	Х	Х	Х	Q _{N-1}	Q _{N-1}	Q _{N-1}	Q _{N-1}	Memory
н	L	L	L	L	L	Q _{N-1}	Q _{N-1}	Q _{N-1}	Addressable
н	L	н	L	L	н	Q _{N-1}	Q _{N-1}	Q _{N-1}	Latch
н	L	L	Н	L	Q _{N-1}	L	Q _{N-1}	Q _{N-1}	
н	L	Н	Н	L	Q _{N-1}	Н	Q _{N-1}	Q _{N-1}	
н	L	L	L	Н	Q _{N-1}	Q _{N-1}	L	Q _{N-1}	
н	L	Н	L	Н	Q _{N-1}	Q _{N-1}	Н	Q _{N-1}	
н	L	L	Н	Н	Q _{N-1}	Q _{N-1}	Q _{N-1}	L	
н	L	Н	Н	Н	Q _{N-1}	Q _{N-1}	Q _{N-1}	Н	

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

MODE SELECTION

E	CL	MODE
L	н	Addressable Latch
н	н	Memory
L	L	Dual 4-Channel Demultiplexer
н	L	Clear

SN54/74LS256

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
Т _А	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
IOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input All Inputs	HIGH Voltage for
M.		54			0.7	v	Guaranteed Input	LOW Voltage for
VIL	Input LOW Voltage	74			0.8	v	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	–18 mA
VOH	Output HIGH Voltage	54, 74	2.4	3.5		V	V_{CC} = MIN, I _{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table	
		54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	VIN = VIL or VIH per Truth Table
Чн	Input HIGH Current Others E Input				20 40	μA	V _{CC} = MAX, V _{IN}	= 2.7 V
	<u>O</u> thers E Input				0.1 0.2	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
ΙIL	Input LOW Current Others E Input				-0.4 -0.8	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX	
ICC	Power Supply Current				30	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25° C)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
^t PLH ^t PHL	Turn-Off Delay, Enable to Output Turn-On Delay, Enable to Output		20 16	27 24	ns ns	Figure 1	
^t PLH ^t PHL	Turn-Off Delay, Data to Output Turn-On Delay, Data to Output		20 13	30 20	ns ns	Figure 2	V _{CC} = 5.0 V, C _I = 15 pF
^t PLH ^t PHL	Turn-Off Delay, Address to Output Turn-On Delay, Address to Output		20 14	30 24	ns ns	Figure 3	or - 19 be
^t PHL	Turn-On Delay, Clear to Output		12	23	ns	Figure 5	

SN54/74LS256

AC SET-UP REQUIREMENTS (T_A = 25°C)

			Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
t _s	Data Setup Time	20			ns	Figuroo 4.8 6	
t _s	Address Setup Time	0			ns	Figures 4 & 6	
^t h	Data Hold Time	0			ns	Figure 4	V _{CC} = 5.0 V
^t h	Address Hold Time	15			ns	Figure 6	
tW	Enable Pulse Width	15			ns	Figure 1	

AC WAVEFORMS

OTHER CONDITIONS: CL = H, A = STABLE

Figure 1. Turn-on and Turn-off Delays, Enable To Output and Enable Pulse Width

OTHER CONDITIONS: $\overline{E} = L$, $\overline{CL} = L$, D = H

Figure 3. Turn-on and Turn-off Delays, Address to Output

OTHER CONDITIONS: $\overline{E} = H$

OTHER CONDITIONS: $\overline{E} = L$, $\overline{CL} = H$, A = STABLE

OTHER CONDITIONS: \overline{C} = H, A = STABLE Figure 4. Setup and Hold Time, Data to Enable

OTHER CONDITIONS: $\overline{CL} = H$

Figure 6. Setup Time, Address to Enable (See Notes 1 and 2)

NOTES:

1. The Address to Enable Setup Time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

2. The shaded areas indicate when the inputs are permitted to change for predictable output performance.

Case 751B-03 D Suffix **16-Pin Plastic** SO-16

Case 648-08 N Suffix **16-Pin Plastic**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD 2 3.
- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 4.
- PER SIDE. 751B-01 IS OBSOLETE, NEW STANDARD 751B-03. 5.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050	BSC	
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
М	0°	7 °	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2.
- CONTROLLING DIMENSION: INCH. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 3.
- DIMENSION "B" DOES NOT INCLUDE MOLD 4. FLASH.
- 5.
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD 6. 648-08.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MIN MAX MIN		MAX	
Α	18.80	19.55	0.740	0.770	
В	6.35	6.85	0.250	0.270	
С	3.69	4.44	0.145	0.175	
D	0.39	0.53	0.015	0.021	
F	1.02	1.77	0.040	0.070	
G	2.54	BSC	0.100 BSC		
н	1.27	BSC	0.050 BSC		
J	0.21	0.38	0.008	0.015	
ĸ	2.80	3.30	0.110	0.130	
L	7.50	7.74	0.295	0.305	
М	0°	10°	0°	10°	
S	0.51	1.01	0.020	0.040	

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD 620-09.

- 620-09.

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	19.05	19.55	0.750	0.770	
В	6.10	7.36	0.240	0.290	
С	_	4.19	—	0.165	
D	0.39	0.53	0.015	0.021	
E	1.27	BSC	0.050 BSC		
F	1.40	1.77	0.055	0.070	
G	2.54	BSC	0.100 BSC		
J	0.23	0.27	0.009	0.011	
K	_	5.08	_	0.200	
L	7.62	BSC	0.300 BSC		
M	0°	15°	0°	15°	
N	0.39	0.88	0.015	0.035	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and "M" are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

 \Diamond