

1-OF-8 DECODER/ DEMULTIPLEXER

The LSTTL/MSI SN54/74LS138 is a high speed 1-of-8 Decoder/ Demultiplexer. This device is ideally suited for high speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-of-24 decoder using just three LS138 devices or to a 1-of-32 decoder using four LS138s and one inverter. The LS138 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Demultiplexing Capability
- Multiple Input Enable for Easy Expansion
- Typical Power Dissipation of 32 mW
- Active Low Mutually Exclusive Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

PIN NAMES		LOADING	(Note a)
		HIGH	LOW
A0-A2 E1, E2 E3 _ O0-O7	Address Inputs Enable (Active LOW) Inputs Enable (Active HIGH) Input Active LOW Outputs (Note b)	0.5 U.L. 0.5 U.L. 0.5 U.L. 10 U.L.	0.25 U.L. 0.25 U.L. 0.25 U.L. 5 (2.5) U.L.
00-07		10 O.L.	J (2.3) U.L.

NOTES:

a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.

b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

LOGIC DIAGRAM

1-OF-8 DECODER/ DEMULTIPLEXER LOW POWER SCHOTTKY							
	J SUFFIX CERAMIC CASE 620-09						
	N SUFFIX PLASTIC CASE 648-08						
16 Jener 1444	D SUFFIX SOIC CASE 751B-03						
ORDERING INF	ORMATION						
SN54LSXXXJ SN74LSXXXN SN74LSXXXD	Ceramic Plastic SOIC						
LOGIC SYMBOL							

FAST AND LS TTL DATA

SN54/74LS138

FUNCTIONAL DESCRIPTION

The LS138 is a high speed 1-of-8 Decoder/Demultiplexer fabricated with the low power Schottky barrier diode process. The decoder accepts three binary weighted inputs (A₀, A₁, A₂) and when enabled provides eight mutually exclusive active LOW Outputs (O₀-O₇). The LS138 features three Enable inputs, two active LOW (E₁, E₂) and one active HIGH (E₃). All outputs will be HIGH unless E₁ and E₂ are LOW and E₃ is HIGH. This multiple enable function allows easy parallel ex-

pansion of the device to a 1-of-32 (5 lines to 32 lines) decoder with just four LS138s and one inverter. (See Figure a.)

The LS138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state.

TR	UTH	TABL	E

		INP	UTS						OU	TPUTS			
E ₁	E ₂	E3	A ₀	A ₁	A ₂	00	0 ₁	02	03	04	05	06	07
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
Х	Н	Х	Х	Х	Х	н	Н	Н	Н	Н	Н	н	Н
Х	Х	L	Х	Х	Х	н	н	Н	Н	н	н	н	н
L	L	н	L	L	L	L	Н	Н	Н	н	Н	н	н
L	L	н	н	L	L	н	L	Н	Н	н	Н	н	н
L	L	н	L	Н	L	н	Н	L	Н	н	Н	н	н
L	L	н	н	Н	L	н	Н	Н	L	н	Н	н	н
L	L	Н	L	L	Н	н	Н	Н	Н	L	Н	н	Н
L	L	н	н	L	Н	н	н	Н	Н	н	L	н	н
L	L	н	L	Н	Н	н	н	Н	Н	н	н	L	н
L	L	н	н	Н	Н	н	н	н	н	н	н	Н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Figure a

SN54/74LS138

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Мах	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
IOH	Output Current — High	54, 74			-0.4	mA
IOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

		Limits		_					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
	Input LOW Voltage	54			0.7	v	Guaranteed Input	LOW Voltage for	
VIL	Input LOW Voltage	74			0.8	v	All Inputs		
VIK	Input Clamp Diode Voltage	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
Veu			2.5	3.5		V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}		
^V OH	Output HIGH Voltage	74	2.7	3.5		V	or VIL per Truth T		
	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} or V_{IH}$	
VOL	Oulput LOVV Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
lu .					20	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$		
ŀΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
۱ _{IL}	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
IOS	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
ICC	Power Supply Current				10	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25^{\circ}C$)

		Levels of	Limits				
Symbol	Parameter	Delay	Min	Тур	Max	Unit	Test Conditions
^t PLH ^t PHL	Propagation Delay Address to Output	2 2		13 27	20 41	ns	
^t PLH ^t PHL	Propagation Delay Address to Output	3 3		18 26	27 39	ns	V _{CC} = 5.0 V C _L = 15 pF
^t PLH ^t PHL	Propagation Delay E_1 or E_2 Enable to Output	2 2		12 21	18 32	ns	C _L = 15 pF
^t PLH ^t PHL	Propagation Delay E ₃ Enable to Output	3 3		17 25	26 38	ns	

AC WAVEFORMS

Figure 1

Figure 2

Case 751B-03 D Suffix **16-Pin Plastic** SO-16

Case 648-08 N Suffix **16-Pin Plastic**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD 2 3.
- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 4.
- PER SIDE. 751B-01 IS OBSOLETE, NEW STANDARD 751B-03. 5.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
М	0°	7 °	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2.
- CONTROLLING DIMENSION: INCH. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 3.
- DIMENSION "B" DOES NOT INCLUDE MOLD 4. FLASH.
- 5.
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD 6. 648-08.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	18.80	19.55	0.740	0.770	
В	6.35	6.85	0.250	0.270	
С	3.69	4.44	0.145	0.175	
D	0.39	0.53	0.015	0.021	
F	1.02	1.77	0.040	0.070	
G	2.54	BSC	0.100 BSC		
н	1.27	BSC	0.050 BSC		
J	0.21	0.38	0.008	0.015	
K	2.80	3.30	0.110	0.130	
L	7.50	7.74	0.295	0.305	
М	0°	10°	0°	10°	
S	0.51	1.01	0.020	0.040	

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD 620-09.

- 620-09.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	19.05	19.55	0.750	0.770	
В	6.10	7.36	0.240	0.290	
С	_	4.19	—	0.165	
D	0.39	0.53	0.015	0.021	
E	1.27	BSC	0.050 BSC		
F	1.40	1.77	0.055	0.070	
G	2.54	BSC	0.100 BSC		
J	0.23	0.27	0.009	0.011	
K	_	5.08	_	0.200	
L	7.62	7.62 BSC		BSC	
M	0°	15°	0°	15°	
N	0.39	0.88	0.015	0.035	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and "M" are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

 \Diamond