

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

The SN54/74LS114A offers common clock and common clear inputs and individual J, K, and set inputs. These monolithic dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the truth table as long as minimum set-up times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse.

LOGIC DIAGRAM (Each Flip-Flop)

MODE SELECT — TRUTH TABLE

OPERATING MODE		INP	OUTPUTS			
OPERATING MODE	SD	CD	J	к	q	Q
Set	L	Н	Х	Х	Н	L
Reset (Clear)	н	L	Х	Х	L	н
*Undetermined	L	L	Х	Х	Н	н
Toggle	н	н	h	h	q	q
Load "0" (Reset)	Н	н	I.	h	L	Н
Load "1" (Set)	н	н	h		н	L
Hold	Н	Н	Ι	I	q	q

 * Both outputs will be HIGH while both SD and CD are LOW, but the output states are unpredictable if SD and CD go HIGH simultaneously.

H, h = HIGH Voltage Level

L, I = LOW Voltage Level

X = Don't Care

I, h (q) = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

SN54/74LS114A

DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP

LOW POWER SCHOTTKY

J SUFFIX
CERAMIC
CASE 632-08Image: Display state
Display stateImage: Display state
Display stateImage: Display state
Display state
Display stateImage: Display state
Display state
Display state
Display state
Display stateImage: Display state
Display state
Display state
Display stateImage: Display state
Display stateImage: Display state
Display state
Display state
Display state
Display stateImage: Display state
Display state
Display state
Display stateImage: Display state
Display state
Display state
Display stateImage: Display state
Display state
Display stateImage: Display state
Display state
Display stateImage: Display state
Display state
Display stateImage: Display state
Display state<t

SN54/74LS114A

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
Τ _Α	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
IOH	Output Current — High	54, 74			-0.4	mA
IOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits					
Symbol	Paramet	er		Min	Тур	Max	Unit	Test Conditions	
VIH	Input HIGH Voltage			2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
Ma			54			0.7	v	Guaranteed Input LOW Voltage for	
VIL	Input LOW Voltage		74			0.8	V	All Inputs	
VIK	Input Clamp Diode Vo	oltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	–18 mA
Vou	Output HIGH Voltage		54	2.5	3.5		V	V _{CC} = MIN, I _{OH}	= MAX, V _{IN} = V _{IH}
VOH	Output mon voltage		74	2.7	3.5		V	or VIL per Truth T	able
Max			54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
VOL	Output LOW Voltage		74		0.35	0.5	V	I _{OL} = 8.0 mA	VIN = VIL or VIH per Truth Table
		J, K Set Clear Clock				20 60 120 160	μA	V _{CC} = MAX, V _{IN} = 2.7 V	
ΊΗ	Input HIGH Current	J, K Set Clear Clock				0.1 0.3 0.6 0.8	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
Ι _{ΙL}	Input LOW Current	J, K Set Clear	, Clock			-0.4 -0.8 -1.6	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
IOS	Output Short Circuit C	urrent ((Note 1)	-20		-100	mA	V _{CC} = MAX	
ICC	Power Supply Curren	ıt				6.0	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
fMAX	Maximum Clock Frequency	30	45		MHz	
^t PLH	Propagation Delay, Clock,		15	20	ns	V _{CC} = 5.0 V C _I = 15 pF
^t PHL	Clear, Set to Output		15	20	ns	- L F.

AC SETUP REQUIREMENTS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tW	Clock Pulse Width High	20			ns	
tW	Clear, Set Pulse Width	25			ns	
t _S	Setup Time	20			ns	V _{CC} = 5.0 V
th	Hold Time	0			ns	

Case 632-08 J Suffix 14-Pin Ceramic Dual In-Line

Case 646-06 N Suffix 14-Pin Plastic

NOTES:

- 1. DIMENSIONS "A" AND "B" ARE DATUMS AND "T" IS A DATUM SURFACE.
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD 3. 4.
- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 5.
- MAXIMUM WOLD FROM SIGN 0.13 (0.00 PER SIDE.
 751A-01 IS OBSOLETE, NEW STANDARD 751A-02.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
ĸ	0.10	0.25	0.004	0.009	
M	0°	7 °	0°	7 °	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

- DITES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
 632-01 THRU -07 OBSOLETE, NEW STANDARD 632-08

- 632-08.

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	19.05	19.94	0.750	0.785	
В	6.23	7.11	0.245	0.280	
С	3.94	5.08	0.155	0.200	
D	0.39	0.50	0.015	0.020	
F	1.40	1.65	0.055	0.065	
G	2.54	BSC	0.100 BSC		
2	0.21	0.38	0.008	0.015	
Κ	3.18	4.31	0.125	0.170	
L	7.62	BSC	0.300	BSC	
М	0°	15°	0°	15°	
Ν	0.51	1.01	0.020	0.040	

- NOTES: 1. LEADS WITHIN 0.13 mm (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 2. DIMENSION "E DOES NOT INCLUDE MOLD
- 3. DIMENSION "B" DOES NOT INCLUDE MOLD

FLASH

ROUNDED CORNERS OPTIONAL. 646-05 OBSOLETE, NEW STANDARD 646-06. 4. 5.

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	18.16	19.56	0.715	0.770	
В	6.10	6.60	0.240	0.260	
С	3.69	4.69	0.145	0.185	
D	0.38	0.53	0.015	0.021	
F	1.02	1.78	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.32	2.41	0.052	0.095	
J	0.20	0.38	0.008	0.015	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC		0.300	BSC	
М	0°	10°	0°	10°	
Ν	0.39	1.01	0.015	0.039	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and "M" are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

 \Diamond