Power Products Division

Advance Information **HALF-BRIDGE DRIVER**

The MPIC2111 is a high voltage, high speed, power MOSFET and IGBT driver with dependent high and low side referenced output channels designed for halfbridge applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Internal deadtime is provided to avoid shoot-through in the output half-bridge. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates from 10 to 600 volts.

- Floating Channel Designed for Bootstrap Operation
- Fully Operational to +600 V
- Tolerant to Negative Transient Voltage
- dV/dt Immune
- Gate Drive Supply Range from 10 to 20 V
- Undervoltage Lockout for Both Channels
- CMOS Schmitt-triggered Inputs with Pull-down
- Matched Propagation Delay for Both Channels
- Internally Set Deadtime
- High Side Output in Phase with Input

PRODUCT SUMMARY

VOFFSET	600 V MAX
I _{O+/-}	200 mA/420 mA
VOUT	10 – 20 V
t _{on/off} (typical)	130 & 90 ns
Deadtime (typical)	700 ns

ORDERING INFORMATION

Device	Package
MPIC2111D	SOIC
MPIC2111P	PDIP

10TOROLA

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Rating		Symbol	Min	Max	Unit
High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Input Voltage		VB VS VHO VCC VLO VIN	-0.3 V _B -25 V _S -0.3 -0.3 -0.3 -0.3	625 V _B +0.3 V _B +0.3 25 V _{CC} +0.3 V _{CC} +0.3	V _{DC}
Allowable Offset Supply Voltage Transient		dV _S /dt	-	50	V/ns
*Package Power Dissipation @ $T_C \le +25^{\circ}C$	(8 Lead DIP) (8 Lead SOIC)	PD -		1.0 0.625	Watt
Thermal Resistance, Junction to Ambient	(8 Lead DIP) (8 Lead SOIC)	R _{θJA}		125 200	°C/W
Operating and Storage Temperature		T _j , T _{stg}	-55	150	°C
Lead Temperature for Soldering Purposes, 10 sec	conds	ΤL	-	260	°C

RECOMMENDED OPERATING CONDITIONS

The Input/Output logic timing Diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15 V differential.

High Side Floating Supply Absolute Voltage	VB	V _S +10	V _S +20	V
High Side Floating Supply Offset Voltage	VS	Note 1	600	
High Side Floating Output Voltage	VHO	٧ _S	VB	
Low Side Fixed Supply Voltage	Vcc	10	20	
Low Side Output Voltage	VLO	0	V _{CC}	mA
Logic Input Voltage	V _{IN}	0	V _{CC}	
Ambient Temperature	Т _А	-40	125	°C

Note 1: Logic operational for V_S of -5 to +600 V. Logic state held for V_S of -5 V to $-V_{BS}$.

Unit

Max

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristic STATIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol

Min

Тур

	-				
Logic "1" Input Voltage for HO & Logic "0" Input Voltage for LO @ V_CC = 10 V	VIH	6.4	-	-	V _{DC}
Logic "1" Input Voltage for HO & Logic "0" Input Voltage for LO @ V_CC = 15 V	VIH	9.5	-	-	
Logic "1" Input Voltage for HO & Logic "0" Input Voltage for LO @ V_CC = 20 V	VIH	12.6	-	-	
Logic "0" Input Voltage for HO & Logic "1" Input Voltage for LO @ V_CC = 10 V	VIL	-	-	3.8	
Logic "0" Input Voltage for HO & Logic "1" Input Voltage for LO @ V_CC = 15 V	VIL	_	-	6.0	
Logic "0" Input Voltage for HO & Logic "1" Input Voltage for LO @ V_CC = 20 V	VIL	-	-	8.3	
High Level Output Voltage, $V_{BIAS} - V_O @ I_O = 0 A$	VOH	-	-	100	mV
Low Level Output Voltage, VO @ IO = 0 A	VOL	-	-	100	
Offset Supply Leakage Current @ $V_B = V_S = 600 V$	I _{LK}	-	-	50	μA
Quiescent V _{BS} Supply Current @ V_{IN} = 0 V or V _{CC}	IQBS	-	50	-	
Quiescent V _{CC} Supply Current @ $V_{IN} = 0$ V or V _{CC}	IQCC	-	70	-	
Logic "1" Input Bias Current @ V _{IN} = 15 V	I _{IN+}	-	20	40	
Logic "0" Input Bias Current @ VIN = 0 V	I _{IN}	-	-	1.0	
VBS Supply Undervoltage Positive Going Threshold	V _{BSUV+}	-	8.5	-	V
VBS Supply Undervoltage Negative Going Threshold	V _{BSUV} -	-	8.2	-	
V _{CC} Supply Undervoltage Positive Going Threshold	V _{CCUV+}	-	8.6	-	
V _{CC} Supply Undervoltage Negative Going Threshold	VCCUV-	_	8.2	-	
Output High Short Circuit Pulsed Current @ VOUT = 0 V, PW \leq 10 μs	IO+	200	250	-	mA
Output Low Short Circuit Pulsed Current @ V_OUT = 15 V, PW \leq 10 μs	I0-	420	500	-	

DYNAMIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V unless otherwise specified

Turn–On Propagation Delay @ $V_S = 0 V$	ton	-	850	-	ns
Turn–Off Propagation Delay @ $V_S = 600 V$	^t off	_	150	-	
Turn–On Rise Time @ CL = 1000 pF	tr	-	80	-	
Turn–Off Fall Time @ C _L = 1000 pF	tf	-	40	-	
Deadtime, LS Turn–Off to HS Turn–On & HS Turn–Off to LS Turn–On	DT	-	700	-	
Delay Matching, HS & LS Turn–On/Off	MT	-	30	-	

TYPICAL CONNECTION

MPIC2111

LEAD DEFINITIONS

Symbol	Lead Description
IN	Logic Input for High Side and Low Side Gate Driver Outputs (HO & LO), In Phase with HO
VB	High Side Floating Supply
НО	High Side Gate Drive Output
٧ _S	High Side Floating Supply Return
Vcc	Low Side Supply
LO	Low Side Gate Drive Output
СОМ	Logic and Low Side Return

Figure 1. Input / Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Deadtime Waveform Definitions

MPIC2111

PACKAGE DIMENSIONS

MPIC2111

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or the rights or others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **M** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

