UHF Silicon FET Power Amplifier

Designed specifically for the Pan European digital 8.0 watt, GSM mobile radio. The MHW913 is capable of wide power range control, operates from a 12.5 volt supply and requires less than 100 mW of RF input power.

- Specified 12.5 V Characteristics
- RF Input Power ≤ 100 mW (20 dBm) RF Output Power = 14 W Minimum Gain = 21.5 dB Minimum Efficiency = 35%
- 50 Ω Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Epoxy Glass Substrate Eliminates Possibility of Substrate Fracture
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

14 WATT 880–915 MHz RF POWER AMPLIFIER

CASE 301AB-02, STYLE 1

MAXIMUM RATINGS (Flange Temperature = 25°C)

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{bias} , V _{S2} , V _{S3}	5.0 15.6	Volt
RF Input Power	P _{in}	200	mW
RF Output Power	Pout	15	Watt
Storage Temperature	тс	– 30 to +100	°C
Operating Case Temperature	T _{stg}	– 30 to +100	°C

ELECTRICAL CHARACTERISTICS ($V_{S2} = V_{S3} = 12.5 \text{ Vdc}, V_{bias} = 4.8 \text{ Vdc}, T_C = 25^{\circ}\text{C}, 50 \Omega \text{ system, unless otherwise noted}$)

Characteristic	Symbol	Min	Max	Unit
Frequency Range	BW	880	915	MHz
Efficiency (P _{out} = 14 W) (1)	η	35	—	%
Power Gain (P _{out} = 14 W) (1)	Gp	21.5	—	dB
Harmonic Output (P _{Out} = 14 W Reference) (1)	2f ₀ 3f ₀	—	- 30 - 35	dBc
Input VSWR (P _{out} = 14 W) (1)	VSWR _{in}	—	3:1	
Linearity — % AM in Output P_{out} = 0.02 to 14 W; 135 kHz, 1.0% AM on Input (1)	—		6.0	%
Output Power at Decreased Voltage ($P_{in} = 100 \text{ mW}, V_{S2} = V_{S3} = 10.8 \text{ Vdc}$) (1)	Pout	10	_	Watt

(1) Adjust Pin for specified Pout.

(continued)

ELECTRICAL CHARACTERISTICS (continued) ($V_{S2} = V_{S3} = 12.5 \text{ V}$, $V_{bias} = 4.8 \text{ V}$, $T_C = 25^{\circ}C$, 50 Ω system, unless otherwise noted)

		, ,		,
Load Mismatch Stress (V _{Supply} = 15.6 Vdc, P _{Out} = 15 W; Load VSWR = 10:1, All Phase Angles) (1)	—	No degradation in output power		
Stability (V _{Supply} = 10.8 to 16 Vdc; P _{Out} = 0.03 to 14 W; Load VSWR = 6:1, All Phase Angles) (1)	—	All spurious outputs more than 60 dB below desired signal		
Quiescent Current (With No RF Applied) (V _{S2} = V _{S3} = 12.5 Vdc, V _{bias} = 4.8 Vdc)	I _{sq}	_	500	mA
Leakage Current (P_{in} = 0 mW, V_{S2} = V_{S3} = 12.5 Vdc, V_b = 0 Vdc)	١L	—	0.6	mA
Bias P _{in} Current (P _{out} = 14 W) (1)	I _{bias}	_	0.8	mA
Noise Power (In 30 kHz Bandwidth, 20 MHz above f_0) (P _{out} = 0.03 to 14 W, V _{S2} = V _{S3} = 10.8 to 15.6 Vdc; V _{bias} = 4.8 Vdc) (1)	_	_	-70	dBm

(1) Adjust Pin for specified Pout.

Figure 1. MHW913 Test Circuit Diagram

Typical Characteristics

Figure 2. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

Figure 5. Input Power versus Case Temperature for Pout = 14 W

Figure 6. Output Power versus Case Temperature for Maximum Input Power

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death maleges that Motorola was negligent regarding the design or manufacture of the pat. Motorola and its officers, like and its and for subjection for the personal injury or death maleges that Motorola was negligent regarding the design or manufacture of the pat. Motorola and its officers and subjection for indirectly or indirectly or indirectly or indirectly or manufacture of the pat. Motorola and its officers and subject to a subject or indirectly or indirectly or indirectly or manufacture of the pat. Motorola and its officers and subject or indirectly or indirectly oreased in the subject or manufacture of th

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

MOTOROLA -

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

