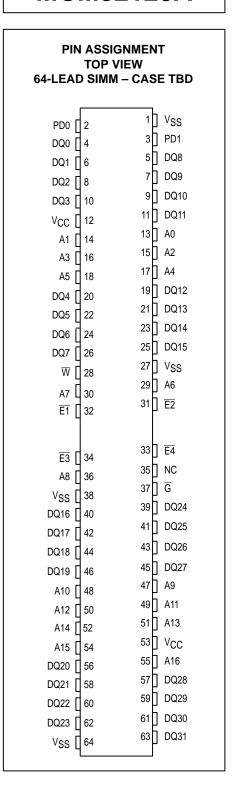
# 128K x 32 Bit Fast Static RAM Module

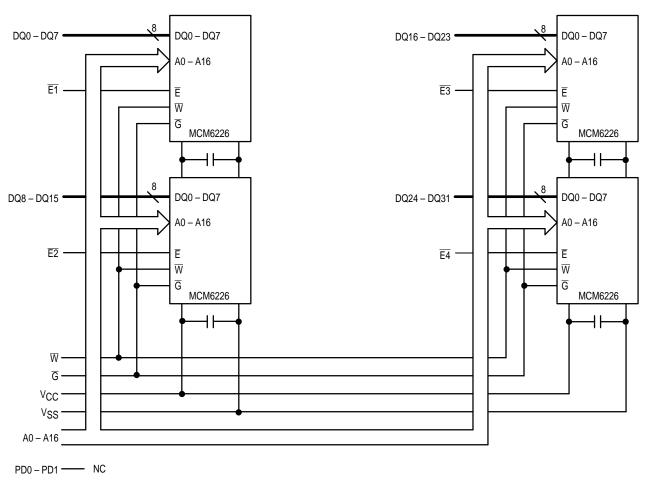
The MCM32128A is a 4M bit static random access memory module organized as 131,072 words of 32 bits. The module is offered in a 64–lead single in–line memory module (SIMM). Four MCM6226 fast static RAMs, packaged in 32–lead SOJ packages are mounted on a printed circuit board along with four decoupling capacitors.

The MCM6226 is a high-performance CMOS fast static RAM organized as 131,072 words of 8 bits, fabricated using high-performance silicon-gate CMOS technology. Static design eliminates the need for external clocks or timing strobes, while CMOS circuitry reduces power consumption and provides for greater reliability.


The MCM32128A is equipped with output enable  $(\overline{G})$  and four separate byte enable  $(\overline{E1} - \overline{E4})$  inputs, allowing for greater system flexibility. The  $\overline{G}$  input, when high, will force the outputs to high impedance.  $\overline{Ex}$  high will do the same for byte x.

- Single 5 V ± 10% Power Supply
- Fast Access Times: 15/20/25 ns
- Three-State Outputs
- Fully TTL Compatible
- JEDEC Standard Pinout
- Power Requirement: 520/480/460 mA Maximum, Active AC
- High Board Density ZIP or SIMM Package
- Byte Operation: Four Separate Chip Enables, One for Each Byte
- High Quality Four–Layer FR4 PWB with Separate Internal Power and Ground Planes
- Incorporates Motorola's State-of-the-Art Fast Static RAMs

| PIN NAMES                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| A0 − A16  Address Inputs    W  Write Enable    G  Output Enable    E1 − E4  Byte Enables    DQ0 − DQ31  Data Input/Output    VCC  + 5 V Power Supply |
| VSS                                                                                                                                                  |


For proper operation of the device,  $V_{SS}$  must be connected to ground.

## MCM32128A



## **FUNCTIONAL BLOCK DIAGRAM**

## 128K x 32 MEMORY MODULE



MCM32128A

#### **TRUTH TABLE**

| Ex | G | W | Mode         | V <sub>CC</sub> Current | Output           | Cycle       |
|----|---|---|--------------|-------------------------|------------------|-------------|
| Н  | Х | Х | Not Selected | ISB1 or ISB2            | High–Z           |             |
| L  | Н | Н | Read         | ICCA                    | High–Z           | _           |
| L  | L | Н | Read         | ICCA                    | D <sub>out</sub> | Read Cycle  |
| L  | Х | L | Write        | ICCA                    | D <sub>in</sub>  | Write Cycle |

#### **ABSOLUTE MAXIMUM RATINGS** (Voltages referenced to $V_{SS} = 0 \text{ V}$ )

| Rating                              | Symbol                             | Value                    | Unit |
|-------------------------------------|------------------------------------|--------------------------|------|
| Power Supply Voltage                | Vcc                                | - 0.5 to 7.0             | V    |
| Voltage Relative to V <sub>SS</sub> | V <sub>in</sub> , V <sub>out</sub> | $-0.5$ to $V_{CC} + 0.5$ | V    |
| Output Current (per I/O)            | l <sub>out</sub>                   | ± 30                     | mA   |
| Power Dissipation                   | PD                                 | 4.4                      | W    |
| Temperature Under Bias              | T <sub>bias</sub>                  | - 10 to + 85             | °C   |
| Operating Temperature               | TA                                 | 0 to + 70                | °C   |
| Storage Temperatrue                 | T <sub>stg</sub>                   | - 25 to + 125            | °C   |

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

The devices on this module contain circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high imped-

These CMOS memory circuits have been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The module is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

## DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$ 

## RECOMMENDED OPERATING CONDITIONS (Voltages referenced to V<sub>SS</sub> = 0 V)

| Parameter                                | Symbol          | Min     | Max                   | Unit |
|------------------------------------------|-----------------|---------|-----------------------|------|
| Supply Voltage (Operating Voltage Range) | VCC             | 4.5     | 5.5                   | V    |
| Input High Voltage                       | V <sub>IH</sub> | 2.2     | V <sub>CC</sub> +0.3* | V    |
| Input Low Voltage                        | V <sub>IL</sub> | - 0.5** | 0.8                   | V    |

<sup>\*</sup> $V_{IH}$  (max) =  $V_{CC}$  + 0.3 V dc;  $V_{IH}$  (max) =  $V_{CC}$  + 2 V ac (pulse width  $\leq$  20 ns) \*\* $V_{IL}$  (min) = - 3.0 V ac (pulse width  $\leq$  20 ns)

#### DC CHARACTERISTICS

| Parameter                                                                                                                | Symbol                                                                                                                                      | Min              | Max | Unit              |    |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|-------------------|----|
| Input Leakage Current (All Inputs, Vin = 0 to VCC)                                                                       | l <sub>lkg(l)</sub>                                                                                                                         | _                | ± 4 | μА                |    |
| Output Leakage Current ( $\overline{G}$ , $\overline{Ex} = V_{IH}$ , $V_{out} = 0$ to $V_{CC}$ )                         | l <sub>lkg(O)</sub>                                                                                                                         | _                | ± 4 | μА                |    |
| AC Active Supply Current ( $\overline{G}$ , $\overline{Ex} = V_{IL}$ , $I_{Out} = 0$ mA, Cycle time $\geq t_{AVAV}$ min) | MCM32128A-15: $t_{AVAV}$ = 15 ns<br>MCM32128A-20: $t_{AVAV}$ = 20 ns<br>MCM32128A-25: $t_{AVAV}$ = 25 ns                                    | ICCA             | _   | 520<br>480<br>460 | mA |
| AC Standby Current ( $\overline{Ex} = V_{IH}$ , Cycle time $\ge t_{AVAV}$ min)                                           |                                                                                                                                             | I <sub>SB1</sub> | _   | 160               | mA |
| CMOS Standby Current ( $\overline{Ex} \ge V_{CC} - 0.2 \text{ V}$ , All Inputs $\ge V_{CC}$                              | CMOS Standby Current ( $\overline{\text{Ex}} \ge V_{CC} - 0.2 \text{ V}$ , All Inputs $\ge V_{CC} - 0.2 \text{ V}$ or $\le 0.2 \text{ V}$ ) |                  |     |                   | mA |
| Output Low Voltage (I <sub>OL</sub> = + 8.0 mA)                                                                          | V <sub>OL</sub>                                                                                                                             | _                | 0.4 | ٧                 |    |
| Output High Voltage (I <sub>OH</sub> = - 4.0 mA)                                                                         |                                                                                                                                             | Vон              | 2.4 | _                 | V  |

NOTE: Good decoupling of the local power supply should always be used.

## CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T<sub>A</sub> = 25°C, Periodically Sampled Rather Than 100% Tested)

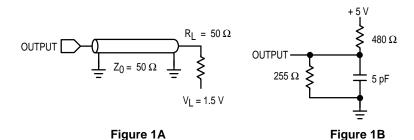
|                          | Characteristic                     | Symbol           | Max      | Unit |
|--------------------------|------------------------------------|------------------|----------|------|
| Input Capacitance        | C <sub>in</sub><br>C <sub>in</sub> | 24<br>14         | pF<br>pF |      |
| Input/Output Capacitance | (DQ0 – DQ31)                       | C <sub>out</sub> | 9        | pF   |

MOTOROLA FAST SRAM MCM32128A

#### AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ T}_{A} = 0 \text{ to} + 70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$ 

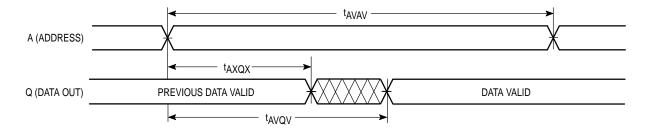
| Input Timing Measurement Reference Level 1.5 V | Output Load See Figure 1A Unless Otherwise Noted |
|------------------------------------------------|--------------------------------------------------|
| Output Timing Reference Level 1.5 V            | Input Rise/Fall Time 3 ns                        |
| Input Pulse Levels 0 to 3.0 V                  |                                                  |


#### READ CYCLE TIMING (See Notes 1 and 2)

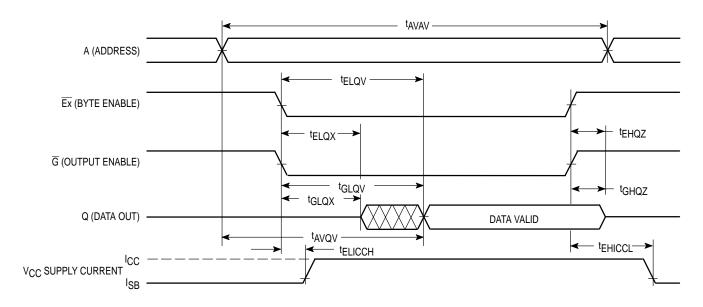
|                                     |                     | MCM32128A-15 |     | MCM32128A-20 |     | MCM32128A-25 |     |      |       |
|-------------------------------------|---------------------|--------------|-----|--------------|-----|--------------|-----|------|-------|
| Parameter                           | Symbol              | Min          | Max | Min          | Max | Min          | Max | Unit | Notes |
| Read Cycle Time                     | t <sub>AVAV</sub>   | 15           | _   | 20           | _   | 25           | _   | ns   | 3     |
| Address Access Time                 | tAVQV               | _            | 15  | _            | 20  | _            | 25  | ns   |       |
| Enable Access Time                  | <sup>t</sup> ELQV   | _            | 15  | _            | 20  | _            | 25  | ns   |       |
| Output Enable Access Time           | <sup>t</sup> GLQV   | _            | 8   | _            | 9   | _            | 10  | ns   |       |
| Output Hold from Address Change     | <sup>t</sup> AXQX   | 5            | _   | 5            | _   | 5            | _   | ns   |       |
| Enable Low to Output Active         | <sup>t</sup> ELQX   | 5            | _   | 5            | _   | 5            | _   | ns   | 4,5,6 |
| Output Enable to Output Active      | <sup>t</sup> GLQX   | 0            | _   | 0            | _   | 0            | _   | ns   | 4,5,6 |
| Enable High to Output High–Z        | <sup>t</sup> EHQZ   | 0            | 6   | 0            | 7   | 0            | 8   | ns   | 4,5,6 |
| Output Enable High to Output High–Z | <sup>t</sup> GHQZ   | 0            | 6   | 0            | 7   | 0            | 8   | ns   | 4,5,6 |
| Power Up Time                       | <sup>t</sup> ELICCH | 0            | _   | 0            | _   | 0            | _   | ns   |       |
| Power Down Time                     | <sup>t</sup> EHICCL | _            | 15  | _            | 20  | _            | 25  | ns   |       |

#### NOTES:

- 1.  $\overline{W}$  is high for read cycle.
- 2.  $\overline{E1} \overline{E4}$  are represented by  $\overline{E}$  in these timing specifications, any combination of  $\overline{Ex}$ s may be asserted.
- 3. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 4. At any given voltage and temperature, t<sub>EHQZ</sub> max is less than t<sub>ELQX</sub> min, and t<sub>GHQZ</sub> max is less than t<sub>GHQX</sub> min, both for a given device and from device to device.
- 5. Transition is measured  $\pm$  500 mV from steady–state voltage with load of Figure 1B.
- 6. This parameter is sampled and not 100% tested.
- 7. Device is continuously selected ( $\overline{E} = V_{IL}$ ,  $\overline{G} = V_{IL}$ ).


#### **AC TEST LOADS**




## **TIMING LIMITS**

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

## READ CYCLE 1 (See Note 7 Above)

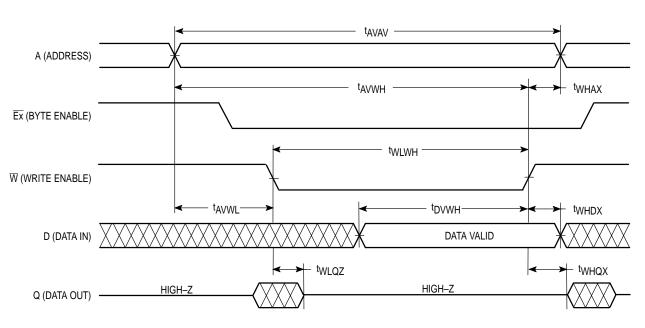


## READ CYCLE 2 (See Note)



NOTE: Addresses valid prior to or coincident with  $\overline{\mathsf{E}}$  going low.

MOTOROLA FAST SRAM MCM32128A 5


## WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

|                               |                   | MCM32128A-15 MCM32128A-20 |     | MCM32128A-25 |     |     |     |      |       |
|-------------------------------|-------------------|---------------------------|-----|--------------|-----|-----|-----|------|-------|
| Parameter                     | Symbol            | Min                       | Max | Min          | Max | Min | Max | Unit | Notes |
| Write Cycle Time              | tAVAV             | 15                        | _   | 20           | _   | 25  | _   | ns   | 3     |
| Address Setup Time            | tAVWL             | 0                         | _   | 0            | _   | 0   | _   | ns   |       |
| Address Valid to End of Write | t <sub>AVWH</sub> | 12                        | _   | 15           | _   | 17  | _   | ns   |       |
| Write Pulse Width             | tWLWH,<br>tWLEH   | 12                        | _   | 15           | _   | 17  | _   | ns   |       |
| Data Valid to End of Write    | <sup>t</sup> DVWH | 7                         | _   | 8            | _   | 10  | _   | ns   |       |
| Data Hold Time                | tWHDX             | 0                         | _   | 0            | _   | 0   | _   | ns   |       |
| Write Low to Data High–Z      | tWLQZ             | 0                         | 6   | 0            | 7   | 0   | 8   | ns   | 4,5,6 |
| Write High to Output Active   | tWHQX             | 5                         | _   | 5            | _   | 5   | _   | ns   | 4,5,6 |
| Write Recovery Time           | tWHAX             | 0                         | _   | 0            | _   | 0   | _   | ns   |       |

#### NOTES:

- 1. A write occurs during the overlap of  $\overline{E}$  low and  $\overline{W}$  low.
- 2.  $\overline{E1} \overline{E4}$  are represented by  $\overline{E}$  in these timing specifications, any combination of  $\overline{Ex}$  may be asserted.  $\overline{G}$  is a don't care when  $\overline{W}$  is low.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. Transition is measured  $\pm$  500 mV from steady–state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. At any given voltage and temperature, twLoz max is less than twHox min both for a given device and from device to device.

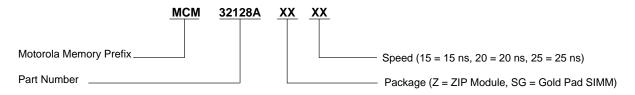
#### **WRITE CYCLE 1**



MCM32128A MOTOROLA FAST SRAM

## WRITE CYCLE 2 (E Controlled, See Notes 1 and 2)

|                               |                   | MCM32128A-15 |          | MCM32128A-20 |     | MCM32128A-25 |     |      |       |
|-------------------------------|-------------------|--------------|----------|--------------|-----|--------------|-----|------|-------|
| Parameter                     | Symbol            | Min          | Max      | Min          | Max | Min          | Max | Unit | Notes |
| Write Cycle Time              | <sup>t</sup> AVAV | 15           | _        | 20           | _   | 25           | _   | ns   | 3     |
| Address Setup Time            | <sup>t</sup> AVEL | 0            | _        | 0            | _   | 0            | _   | ns   |       |
| Address Valid to End of Write | <sup>t</sup> AVEH | 12           | _        | 15           | _   | 17           | _   | ns   |       |
| Enable to End of Write        | t <sub>ELEH</sub> | 10           | _        | 12           | _   | 15           | _   | ns   | 4,5   |
| Enable to End of Write        | <sup>t</sup> ELWH | 10           | _        | 12           | _   | 15           | _   | ns   |       |
| Write Pulse Width             | tWLEH             | 10           | _        | 12           | _   | 15           | _   | ns   |       |
| Data Valid to End of Write    | <sup>t</sup> DVEH | 7            | _        | 8            | _   | 10           | _   | ns   |       |
| Data Hold Time                | tEHDX             | 0            | _        | 0            | _   | 0            | _   | ns   |       |
| Write Recovery Time           | tEHAX             | 0            | <u> </u> | 0            | l – | 0            | l – | ns   |       |


#### NOTES:

- 1. A write occurs during the overlap of  $\overline{E}$  low and  $\overline{W}$  low.
- 2.  $\overline{E1} \overline{E4}$  are represented by  $\overline{E}$  in these timing specifications, any combination of  $\overline{Ex}$  may be asserted.  $\overline{G}$  is a don't care when  $\overline{W}$  is low.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. If  $\overline{E}$  goes low coincident with or after  $\overline{W}$  goes low, the output will remain in a high impedance condition.
- 5. If  $\overline{E}$  goes high coincident with or before  $\overline{W}$  goes high, the output will remain in a high impedance condition.

## **WRITE CYCLE 2**



## ORDERING INFORMATION (Order by Full Part Number)



Full Part Numbers — MCM32128AZ15 MCM32128AZ20 MCM32128AZ25 MCM32128ASG15 MCM32128ASG20 MCM32128ASG25

MOTOROLA FAST SRAM MCM32128A

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "a are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

#### **Literature Distribution Centers:**

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. JAPAN: Nippon Motorola Ltd.; 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.



