

8-BIT ADDRESSABLE LATCH

The MC54/74F259 is a high-speed 8-bit addressable latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and also a 1-of-8 decoder and demultiplexer with active HIGH outputs. The device also incorporates an active LOW Common Clear for resetting all latches, as well as an active LOW Enable.

- Serial-to-Parallel Conversion
- · Eight Bits of Storage with Output of Each Bit Available
- Random (Addressable) Data Entry
- Active High Demultiplexing or Decoding Capability
- Easily Expandable
- Common Clear

FUNCTIONAL DESCRIPTION

The MC54/74F259 has four modes of operation as shown in the Mode Select Table. In the addressable latch mode, data on the Data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states in the memory mode. All the latches remain in their previous state and are unaffected by the Data or Address inputs.

In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs. When operating the MC54/74F259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode. The Truth Table below summarizes the operations of the MC54/74F259.

Q3

7

 Q_4

9 10 11 12

Q₆ Q₇

Q5

3

A₂

 $Q_0 Q_1 Q_2$

4 5 6

MC54/74F259

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	54, 74	4.5	5.0	5.5	V
-	Operating Ambient Temperature Dense	54	-55	25	125	°C
TA	Operating Ambient Temperature Range	74	0	25	70	
ЮН	Output Current — High	54, 74			-1.0	mA
IOL	Output Current — Low	54, 74			20	mA

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

MODE SELECT TABLE

Ē	MR	Mode
L	Н	Addressable Latch
Н	н	Memory
L	L	Active HIGH 8-Channel Demultiplexer
н	L	Clear

H = HIGH Voltage Level

L = LOW Voltage Level

FUNCTION TABLE

Operating		Inputs				Outputs								
Mode	MR	Ε	D	A ₀	A ₁	A ₂	Q ₀	Q ₁	Q ₂	Q3	Q4	Q5	Q ₆	Q7
Master Reset	L	Н	Х	Х	Х	Х	L	L	L	L	L	L	L	L
	L	L	d	L	L	L	Q=d	L	L	L	L	L	L	L
Demultiplex	L	L	d	н	L	L	L	Q = d	L	L	L	L	L	L
(Active HIGH	L	L	d	L	н	L	L	L	Q=d	L	L	L	L	L
Decoder when	•	•	•	•	•	•	•	•	•	•	•	•	•	•
D = H)	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	L	L	d	Н	Н	Н	L	L	L	L	L	L	L	Q=d
Store (Do Nothing)	н	Н	х	Х	Х	Х	q ₀	q 1	92	q3	q ₄	q5	96	97
	Н	L	d	L	L	L	Q=d	q 1	92	q 3	q 4	9 5	96	97
	н	L	d	н	L	L	90	Q=d	92	q3	94	95	96	97
	н	L	d	L	н	L	90	91	Q=d	93	94	95	96	97
Addressable	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Latch	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
	н	L	d	Н	Н	н	90	91	q 2	q 3	q 4	95	96	Q=d

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

d = HIGH or LOW Data one setup time prior to the LOW-to-HIGH Enable transition.

q = Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.

MC54/74F259

			Limits						
Symbol	I Parameter		Min	Тур	Max	Unit	Test Conditions		
VIH	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage			
VIL	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage		
VIK	Input Clamp Diode Voltage				-1.2	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
V _{OH}	Output HIGH Voltage	54, 74	2.5			V	I _{OL} = -1.0 mA	$V_{CC} = MIN$	
		74	2.7			V	I _{OL} = -1.0 mA	V _{CC} = 4.75 V	
VOL	Output LOW Voltage				0.5	V	$I_{OL} = 20 \text{ mA}$ $V_{CC} = \text{MIN}$		
I					20	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$		
lн	Input HIGH Current				0.1	mA	$V_{CC} = MAX, V_{IN} = 7.0 V$		
۱ _{IL}	Input LOW Current				-0.6	mA	$V_{CC} = MAX, V_{IN} = 0.5 V$		
IOS	Output Short Circuit Current (Note 2)		-60		-150	mA	V _{CC} = MAX, V _{OUT} = 0 V		
	Power Supply Current				46	mA	V _{CC} = MAX		
ICC	Total, Output HIGH Total, Output LOW				75	mA	V _{CC} = MAX		

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

NOTES:

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
Not more then one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

		54/	74F	5	4F	74		
		T _A = - V _{CC} = C _L =	+5.0 V	V _{CC} = 5	to + 125°C .0 V ±10% 50 pF	T _A = 0 to + 70°C V _{CC} = 5.0 V ±10% C _L = 50 pF		
Symbol	Symbol Parameter		Max	Min	Max	Min	Max	Unit
^t PLH ^t PHL	Propagation Delay \overline{E} to Q_n	4.0 3.0	10.5 7.0	4.0 3.0	13 8.5	4.0 3.0	12 7.0	ns
^t PLH ^t PHL	Propagation Delay D _n to Q _n	3.5 3.0	9.0 6.5	3.5 2.5	11.5 8.5	3.5 2.5	10 7.0	ns
^t PLH ^t PHL	Propagation Delay A _n to Q _n	3.5 4.0	13 9.0	3.5 4.0	15.5 11	3.5 4.0	14.5 9.5	ns
^t PHL	Propagation Delay MR to Q _n	5.0	9.0	4.5	11.5	4.5	10	ns

AC OPERATING REQUIREMENTS

		54/74F		5	4F	74		
		T _A = +25°C V _{CC} = +5.0 V		T _A = −55 to +125°C V _{CC} = 5.0 ±10%		T _A = 0 to +70 °C V _{CC} = 5.0 V ±10%		
Symbol	Parameter	Min	Мах	Min	Max	Min	Max	Unit
t _S (H) t _S (L)	Setup Time, HIGH or LOW D_n to \overline{E}	4.0 4.0		5.0 5.0		4.0 4.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW D _n to Ē	2.0 2.0		2.0 2.0		2.0 2.0		ns
t _S (H) t _S (L)	Setup Time, HIGH or LOW A to $\overline{E}(a)$	4.0 4.0		4.0 4.0		4.0 4.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW A to $\overline{E}^{(b)}$	0 0		0 0		0 0		ns
tW	E Pulse Width	4.0		4.0		4.0		ns
tW	MR Pulse Width	4.0		4.0		4.0		ns

a. The Address to Enable setup time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

b. The Address to Enable hold time is the time after the LOW-to-HIGH Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.