

DUAL 4-BIT ADDRESSABLE LATCH

The MC54/74F256 dual addressable latch has four distinct modes of operation which are selectable by controlling the Clear and Enable inputs (see Function Table). In the addressable latch mode, data at the Data (D) inputs is written into the addressed latches. The addressed latches will follow the Data input with all unaddressed latches remaining in their previous states.

In the memory mode, all latches remain in their previous states and are unaffected by the Data or Address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held HIGH (inactive) while the address lines are changing. In the dual 1-of-4 decoding or demultiplexing mode ($\overline{MR} = \overline{E} = LOW$), addressed outputs will follow the level of the D inputs with all other outputs LOW. In the clear mode, all outputs are LOW and uneffected by the Address and Data inputs.

- Combines Dual Demultiplexer and 8-Bit Latch
- Serial-to-Parallel Capability
- Output from Each Storage Bit Available
- Random (Addressable) Data Entry
- · Easily Expandable
- Common Clear Input
- Useful as Dual 1-of-4 Active HIGH Decoder

FUNCTION TABLE

		Inputs					Outputs				
Operating Mode	MR	Ē	D	A ₀	А ₁	Q ₀	Q ₁	Q ₂	Q3		
Master Reset	L	Н	Х	Х	Х	L	L	L	L		
Demultiplex (Active	L	L	d d	L H	L	Q=d	L Q=d	L	L		
HIGH Decoder when D = H)		L	d d d	L H	L H H		L	Q=d	L L		
Store (Do Nothing)	н	<u>-</u> н	u X	<u>п</u> Х	<u>п</u> Х	L			Q=d		
Store (Do Notining)	<u> </u>	11		~	Λ	90	q 1	9 <u>2</u>	q3		
	н	L	d	L	L	Q=d	91	q 2	q 3		
Addressable	н	L	d	Н	L	90	Q=d	q2	q3		
Latch	н	L	d	L	н	90	91	Q=d	q3		
	н	L	d	Н	н	90	91	92	Q = d		

H = HIGH Voltage Level Steady State

L = LOW Voltage Level Steady State

X = Immaterial

d = HIGH or LOW Data one setup time prior to the LOW-to-HIGH Enable transition.

q = Lower case letters indicate the state of the referenced output established during the last cycle in which it was addressed or cleared.

 DUAL 4-BIT ADDRESSABLE LATCH FASTTM SCHOTTKY TTL

 J SUFFIX CERAMIC CASE 620-09

 J SUFFIX CERAMIC CASE 620-09

 N SUFFIX PLASTIC CASE 648-08

 D SUFFIX PLASTIC CASE 648-08

 D SUFFIX SOIC CASE 751B-03

MC54/74F256

ORDERING INFORMATION

MC54FXXXJ MC74FXXXN MC74FXXXD

l.

MC54/74F256

LOGIC DIAGRAM

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54, 74	4.5	5.0	5.5	V
т _А	Operating Ambient Temperature Range	54	-55	25	125	°C
		74	0	25	70	
ЮН	Output Current — High	54, 74			-1.0	mA
IOL	Output Current — Low	54, 74			20	mA

MC54/74F256

			Limits					
Symbol	Parameter		Min Typ Max		Unit	Test Conditions		
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage	
VIL	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage	
VIK	Input Clamp Diode Voltage				-1.2	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
VOH Output HIGH Voltage	54, 74	2.5			V	I _{OL} = -1.0 mA	$V_{CC} = MIN$	
	Oulpul HIGH vollage	74	2.7			V	$I_{OL} = -1.0 \text{ mA}$	V _{CC} = 4.75 V
VOL	Output LOW Voltage				0.5	V	I _{OL} = 20 mA V _{CC} = MIN	
I	IIH Input HIGH Current				20	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$	
ЧΗ					0.1	mA	$V_{CC} = MAX, V_{IN} = 7.0 V$	
۱ _{IL}	Input LOW Current				-0.6	mA	V_{CC} = MAX, V_{IN} = 0.5 V	
IOS	Output Short Circuit Current (Note 2)		-60		-150	mA	V _{CC} = MAX, V _{OUT} = 0 V	
	Power Supply Current Total, Output HIGH				42	mA	V _{CC} = MAX	
ICC Total, Output LOW					60	mA	$V_{CC} = MAX$	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

		54/	74F	5	4F	$74F \\ T_A = 0 \text{ to } 70^\circ\text{C} \\ V_{CC} = 5.0 \text{ V} \pm 5\% \\ C_L = 50 \text{ pF} \end{cases}$		
		V _{CC} =	T _A = +25°C V _{CC} = +5.0 V C _L = 50 pF		to +125°C .0 V ±10% 50 pF			
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
^t PLH ^t PHL	Propagation Delay \overline{E} to Q_n	4.0 3.0	10.5 7.0	4.0 3.0	13 8.5	4.0 3.0	12 7.5	ns
^t PLH ^t PHL	Propagation Delay D _n to Q _n	3.5 3.0	9.0 7.0	3.5 2.5	11.5 8.5	3.5 2.5	10 7.5	ns
^t PLH ^t PHL	Propagation Delay A _n to Q _n	3.5 4.0	14 9.5	3.5 4.0	15.5 11	3.5 4.0	14.5 10	ns
^t PHL	Propagation Delay $\overline{\text{MR}}$ to Q_{N}	5.0	9.0	4.5	11.5	4.5	10	ns

AC OPERATING REQUIREMENTS

		54/	54/74F		4F	74F		
			T _A = +25°C V _{CC} = +5.0 V		to +125°C .0 V ±10%	$T_A = 0 \text{ to } 70^{\circ}\text{C}$ $V_{CC} = 5.0 \text{ V} \pm 5\%$		Unit
Symbol	Parameter	Min Max		Min	Max	Min	Max	
t _S (H) t _S (L)	Setup Time, HIGH or LOW D_n to \overline{E}	4.0 4.0		5.0 5.0		4.0 4.0		ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW D_n to \overline{E}	2.0 2.0		2.0 2.0		2.0 2.0		ns
t _S (H) t _S (L)	Setup Time, HIGH or LOW A to $\overline{E}^{(a)}$	4.0 4.0		4.0 4.0		4.0 4.0		ns
t _h (H) t _h (L)	Hold Time HIGH or LOW A to $\overline{E}^{(b)}$	0 0		0 0		0 0		ns
tW	E Pulse Width	4.0		4.0		4.0		ns
t _W	MR Pulse Width	4.0		4.0		4.0		ns

NOTES:

1. The Address to Enable setup time is the time before the HIGH-to-LOW Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.

2. The Address to Enable hold time is the time after the LOW-to-HIGH Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected.