

CARRY LOOKAHEAD GENERATOR

The MC54/74F182 is a high-speed carry lookahead generator. It is generally used with the F181, F381 or 29F01 4-bit arithmetic logic unit to provide high-speed lookahead over word lengths of more than four bits.

- Provides Lookahead Carries Across a Group of Four ALUs
- Multi-level Lookahead High-speed Arithmetic Operation Over Long Word Lengths

CONNECTION DIAGRAM DIP (TOP VIEW)

MC54/74F182

CARRY LOOKAHEAD GENERATOR FAST[™] SCHOTTKY TTL **J SUFFIX** CERAMIC CASE 620-09 **N SUFFIX** PLASTIC CASE 648-08 D SUFFIX SOIC CASE 751B-03 **ORDERING INFORMATION** MC54FXXXJ Ceramic MC74FXXXN Plastic MC74FXXXD SOIC LOGIC SYMBOL 13 Ĉn P₀ . 4

LOGIC DIAGRAM

MC54/74F182

FUNCTION TABLE

	Inputs										Outputs		
Cn	G ₀	P ₀	G ₁	P ₁	G ₂	P ₂	G ₃	P ₃	C _{n+x}	C _{n+y}	C _{n+z}	G	P
Х	Н	Н							L				
L	н	Х							L				
Х	L	Х							Н				
н	Х	L							н				
х	х	х	н	Н						L			
Х	н	Н	Н	Х						L			
L	н	Х	Н	Х						L			
Х	х	Х	L	Х						н			
Х	L	Х	Х	L						н			
н	Х	L	Х	L						Н			
х	х	Х	Х	Х	н	н					L		
Х	х	Х	Н	Н	н	Х					L		
Х	Н	Н	Н	х	Н	Х					L		
L	н	Х	н	х	н	Х					L		
Х	х	Х	Х	Х	L	Х					н		
Х	Х	Х	L	х	Х	L					н		
Х	L	Х	Х	L	х	L					н		
н	Х	L	Х	L	Х	L					н		
	х		х	Х	Х	х	н	н				Н	
	х		Х	х	н	Н	н	х				н	
	х		н	н	н	Х	н	х				н	
	н		Н	Х	н	Х	н	х				Н	
	х		Х	Х	Х	Х	L	х				L	
	х		Х	Х	L	Х	х	L				L	
	х		L	Х	Х	L	х	L				L	
	L		Х	L	Х	L	Х	L				L	
		н		Х		х		х					н
		Х		н		Х		Х					Н
		Х		Х		Н		Х					Н
		Х		х		Х		Н					Н
		L		L		L		L					L

H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54,74	4.5	5.0	5.5	V
ТА	Operating Ambient Temperature Range	54	-55	25	125	°C
		74	0	25	70	
ЮН	Output Current — High	54, 74			-1.0	mA
IOL	Output Current — Low	54, 74			20	mA

MC54/74F182

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE	(unless otherwise specified)
---	------------------------------

				Limits						
Symbol	Parameter		Min	Тур	Тур Мах		Test Conditions			
VIH	Input HIGH Voltage						V	Guaranteed Input HIGH Voltage		
VIL	Input LOW Volta	age				0.8	V	Guaranteed Input LOW Voltage		
VIK	Input Clamp Did	ode Voltage				-1.2	V	I _{IN} = -18 mA	V _{CC} = MIN	
VOH	Output HIGH Vo	utput HIGH Voltage 54, 74					V	I _{OH} = -1.0 mA	V _{CC} = 4.50 V	
			74	2.7	3.4		V	I _{OH} = -1.0 mA	V _{CC} = 4.75 V	
V _{OL}	Output LOW Vo		0.35	0.5	V	I _{OL} = 20 mA	V _{CC} = MIN			
Iн	Input HIGH Cur	rent				20	μΑ	V _{IN} = 2.7 V	V _{CC} = MAX	
						100	μΑ	V _{IN} = 7.0 V	V _{CC} = MAX	
		C _n Input				-1.2				
		P ₃ Input				-2.4				
ΙL	Input LOW	P ₂ Input				-3.6	mA	V _{IN} = 0.5 V	V _{CC} = MAX	
	Current	$\overline{G}_3, \overline{P}_0, \overline{P}_1$ Inpu	ts			-4.8	1			
		$\overline{G}_0, \overline{G}_2$ Inputs				-8.4	1			
		G ₁ Input				-9.6	1			
IOS	Output Short Circuit Current (Note 2)		-60		-150	mA	V _{OUT} = 0 V	V _{CC} = MAX		
ІССН	Power Supply Current (All Outputs HIGH)			18.4	28	mA	\overline{P}_3 , $\overline{G}_3 = 4.5 V$ All Other Inputs = GND	V _{CC} = MAX		
ICCL	Power Supply C	Current (All Outputs	LOW)		23.5	36	mA	$\overline{G}_0, \overline{G}_1, \overline{G}_2 = 4.5 \text{ V}$ All Other Inputs = GND	V _{CC} = MAX	

NOTES:

For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
No more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS

			54/74F		54	IF	74	ŀF	
			T _A = +25°C V _{CC} = +5.0 V			to +125°C	T _A = 0°C		
						$0 V \pm 10\%$	V _{CC} = 5.		
		C _L = 50 pF			C _L =	50 pF	C _L =		
Symbol	Parameter	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PLH	Propagation Delay	3.0	6.6	8.5	3.0	10.5	3.0	9.5	
^t PHL	C_n to $C_{n + x}$, $C_{n + y}$, $C_{n + z}$	3.0	6.8	9.0	3.0	11	3.0	10	ns
^t PLH	Propagation Delay	2.5	6.2	8.0	2.5	10.7	2.5	9.0	
^t PHL	$\overline{P}_0, \overline{P}_1, \text{ or } \overline{P}_2 \text{ to } C_{n + x}, C_{n + y}, C_{n + z}$	1.5	3.7	5.0	1.5	6.5	1.5	6.0	ns
^t PLH	Propagation Delay	2.5	6.5	8.5	2.5	10.5	2.5	9.5	
^t PHL	$\overline{G}_0, \overline{G}_1, \text{ or } \overline{G}_2 \text{ to } C_{n + x}, C_{n + y}, C_{n + z}$	1.5	3.9	5.2	1.5	6.5	1.5	6.0	ns

AC CHARACTERISTICS (Continued)

		54/74F		54	54F		74F		
		T _A = +25°C			T _A = −55°C	to +125°C	T _A = 0°C		
			V _{CC} = +5.0 V C _L = 50 pF) V ± 10%	V _{CC} = 5.0		
						50 pF	с _L =		
Symbol	Parameter	Min	Тур	Max	Min	Max	Min	Max	Unit
^t PLH	Propagation Delay	2.0	7.9	10	2.0	12.5	2.0	11	
^t PHL	$\overline{P}_1, \overline{P}_2, \text{ or } \overline{P}_3 \text{ to } \overline{G}$	2.0	6.0	8.0	2.0	9.5	2.0	9.0	ns
^t PLH	Propagation Delay	2.0	8.3	10.5	2.0	12.5	2.0	11.5	
^t PHL	\overline{G}_n to \overline{G}	1.5	5.7	7.5	1.5	9.5	1.5	8.5	ns
^t PLH	Propagation Delay	2.5	5.7	7.5	2.5	11	2.5	8.5	20
^t PHL	\overline{P}_n to \overline{P}	2.5	4.1	5.5	2.5	7.5	2.5	6.5	ns

FUNCTIONAL DESCRIPTION

The F182 carry lookahead generator accepts up to four pairs of active-LOW Carry Propagate (\overline{P}_0 - \overline{P}_3) and carry Generate $(\overline{G}_0, \overline{G}_3)$ signals and an active-HIGH Carry input (C_n) and provides anticipated active-HIGH carries $(C_{n+x}, C_{n+y}, C_{n+z})$ across four groups of binary adders. The F182 also has active-LOW Carry Propagate (\overline{P}) and Carry Generate (\overline{G}) outputs which may be used for further levels of lookahead. The logic equations provided at the output are:

 $C_{n + x} = G_0 + P_0 C_n$ $C_{n + y} = G_1 + P_1G_0 + P_1P_0C_n$ $C_{n + z} = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_n$

$\overline{G} = \overline{G_3} + \overline{P_3G_2} + \overline{P_3P_2G_1} + \overline{P_3P_2P_1G_0}$ $P = \overline{P_3P_2P_1P_0}$

Also, the F182 can be used with binary ALUs in an active-LOW or active-HIGH input operand mode. The connections (Figure 1) to and from the ALU to the carry lookahead generator are identical in both cases. Carries are rippled between lookahead blocks. The critical speed path follows the circled numbers. There are several possible arrangements for the carry interconnects, but all achieve about the same speed. A 28-bit ALU is formed by dropping the last F181 or F381.

** ALUs may be either F181, F381, or 2901A.

