Order this document

MOTOROLA as AN434/D

mE SEMICONDUCTOR /1
APPLICATION NOTE

AN434

Serial bootstrap for the RAM and
EEPROM1 of the MC68HC05B6

By Jeff Wright,
Motorola Ltd., East Kilbride

INTRODUCTION

The MC68HCO05B6 has 256 bytes of on chip EEPROM,
called EEPROM1, which can be used to store variable
datain anon-volatile manner. In many applications this
EEPROM1 will be used to hold a look-up table or
system set up variables. In these cases itis usually a
requirement that the EEPROM?1 be initialised during

the manufacture of the application. In addition, loading
small programs into RAM and executing them is an
easy way of trying out new software routines. This
application note describes one method for serially
loading (bootstrapping) the EEPROM1 via a program
executing in the RAM of the MC68HCO05B6.

BUILT IN BOOTSTRAP

The MC68HCO5B6 has a built in RAM serial baotstrap
program contained in the mask ROM of the device that
uses the SCI. It would therefore seem a simple task to
load programs into RAM; however, as ROM space on
the device is obviously critical, a very simple protocol
has been implemented. This means that the boot-
loader on the ‘B6’ does notaccept S-records which are
the normal output from an assembler; instead, the
protocol expects pure binary data preceded by a count
byte that holds the size of the program to be down-
loaded. No address information is contained in the
download; instead, the bootloader always starts the
program load at address $50 in RAM. The first byte
(the count byte) is stored here and then as the subse-
quent bytes are received via the SCl they are stored at
incrementing RAM locations and the count byte is

© MOTOROLA LTD., 1990

decremented for each byte received. When the count
byte reaches zero the bootstrap program jumps to
address $51 and starts to execute the program that
has just been loaded. No built in bootstrap routine is
provided for the EEPROM1 array.

These restrictions present two problems:

i) How to convertassembler output to the formatac-
cepted by the 68HC05B6 RAM bootstrap routine?

i) How to bootstrap the EEPROM1 of the
68HCO5B6?

This application note provides a solution for each of
these problems.

MOTOROLA EH

ANA434/D

1) CONVERTING S-RECORDS FOR RAM BOOTSTRAP

To use the built in RAM bootstrap program on the
MC68HCO5B6 the device must be configured as shown
in Figure 1. If these conditions are met when the reset
pin is released, then the serial bootstrap program de-
scribed above will start to execute and a program can be
downloaded via a 9600 baud RS-232 source. Personal
computers usually have one or more RS-232 ports
referred to as COM ports. To overcome the format
difference between S-records and that accepted by the
bootloader, a conversion program is required. There is
also an additional problem when usinga PC-when afile
is copied to a COM port to transfer it, it is the ascii
characters that are transmitted, not the binary data. This
means for example that if a file containing the typed data
byte $A5 was copied via the COM port to the B6, the B6
would in fact receive two bytes: $41 and $35, which
represent the ascii characters A and 5 respectively.

This means that the conversion program has to strip out
the S-record format and convert the resultant data to
binary format for transfer to the HCO5B6. It must also
insert the count byte at the beginning of the output file.

The pascal program BINCONV performs these three
tasks; a listing of the source code is given at the end of
this application note. A flow diagram of BINCONV can
be seen in Figure 2. The inclusion of the count byte has
been left as an option to increase the flexibility of the
program, but it could easily be standardised to include
the count byte for the B6 RAM bootloader. When
BINCONV is invoked it prompts for the name of the S-
record input file and the name required for the binary

output file. After this each S-record in the input file is
read and converted to binary data and stored in a
temporary file. As each S-record is read it is echoed to
the screen; when they have all been processed a
message prompts the user and asks if a count byte is
required. When used with the 68HC05B6 RAM boot-
loader the answer will always be yes, in which case the
count value is written to the output file before the rest
of the data is copied from the temporary file to the
output file. Finally the value of the count byte is dis-
played for user confirmation - remember that the count
byte is equal to the number of bytes in the program
being converted plus 1 for the count byte itself. The
program will only accept standard S-record format and
will trap and abort if any non-valid character or format is
detected.

With the PC COM port set for 9600 baud and the
68HC05B6 configured as in Figure 1 the binary file can
be transferred and executed as follows:

i) Release Reset on the HCO5B6

i) Enterthe command “COPY XXXX.YYY COMT\B” on
the PC.

The program will then be transferred to the B6 and
execution started automatically. Note that the \B option
is used to denote a binary file transfer so that the copy
procedure does not abort if it finds an end of file (EOF)
character in the middle of the file.

MOTOROLA AN434/D
2

+9V

—_——
+5V
10KQ 10KQ
RESET
o 19 10
0.01pF iRQ VDD
- 18
0—-| . RESET s
10MQ = osct TCAP1 —22—|'1_lK%I—1'
t—C 47 osc2 JoKa
—0—— POt
—s pr—— PD4 9—(:}:1_
22pF| 4 MHz 22pF| 10KQ —L
' TDO |52 RS 232 level | > Rso
50 translator: 9600 baud
20| PLMA RDI MC145407 or similar [€—
21| pimB
1
— TCMP2 sk Lt
2
Toue PDO/ANO| 14
2] Toapz PD1/AN1 13-
= 12
391 pmo g PD2 {12
38| pB1 g PD5 |5
371 pB2 8 PDs 44—
36| pp3 & po7 |3 —
35| Pe4 g VAL
/ 341 pPBs & VRHL8
cores, {2 eeo o,
as desired \ 32| pg7 V] .
NC [&—
30 pat pcs |43
2] paz pcs |44
_2_8_ PA3 PC4 45
26| pas pc2 | 47
25| pas PC1 |48
24 pa7 PCo |49
vss

J:f

Figure 1. RAM bootstrap schematic

AN434/D MOTOROLA
3

2) BOOTSTRAPPING THE EEPROM1

To bootstrap the EEPROM1 on the MC68HCO05B6 in
the absence of a built in loader program, use must be
made of the RAM bootloader described above. The
idea is that an EEPROM1 loader can be written to the
users exact requirements then assembled and down-
loaded into the RAM of the HCO5B6 where it will
execute and in turn download data and program it into
the EEPROM1.

The 6K EEPROM emulation part, the MC68HC805B6,
does have abuiltin EEPROM bootloader in place of the
RAM bootloader and there is an accompanying PC
program available from Motorola called E2B6 that
downloads S-records to the device for programming.

The following is an explanation of an example
EEPROMT1 bootstrap program for the B6 that has been
written to be compatible with the 805B6 PC program
E2B6 thus eliminating the need to develop another PC
program.

Alisting of this program (EE1BOOT) is given at the end
of this application note. The MC68HCO05B6 has 176
bytes of RAM that can be used for the EEPROM1
bootstrap program, so the protocol must be kept
simple and the code written efficiently. The format of
the E2B6 program is a transfer of 2 address bytes
followed by the data byte that is to be programmed at
that location. At the same time the B6 returns the data
from the previously programmed location for verifica-
tion by E2B6. The program EE1BOOT has 4 main
sections: @ main loop, an erase routine, a program
routine andan SCl service routine. The core of both the
erase and program subroutines is the extended ad-
dressing subroutine EXTSUB which is used to access
the EEPROM1 array. This subroutine is builtin RAM by
the main loop as the address information for the next
byte tobe programmed isreceived fromthe SCI. E2B6
always sends a null character during initialisation
which could throw the EE1BOOT program out of
synchronisation, asitis already executingbefore E2B6
is invoked. For this reason EE1BOOT ignores the first
character received and treats the second as the first
address byte.

The EXTSUB routine is first called as an “LDA $aaaa”
1o retrieve the last byte programmed for verification.

Then the address in the routine is modified as the next
address to be programmedisreceived. When the data
byteis received the opcode of EXTSUB isincremented
so that it becomes “STA bbbb” before the erase and
program routines are called. After programming the
opcode is decremented back to LDA before the main -
loop is repeated.

Note that the EEPROM1 location is always erased
before programming. The timer output compare func-
tion is used to provide a 10ms delay for erasing and
programming and the programming step is skipped to
save time if the data presented to that location is $FF.
The sequence of events to bootstrap the EEPROM1 of
the 68HCO5B6 is therefore as follows:

1) Configure the 68HC05BS6 as in Figure 1.

2) Assemble the program EE1BOOT and convertitto
binary using BINCONYV as described in section 1.

3) Set up PC COM port to 9600 baud then release
Reset on the HCO5B6.

4) Use the command “COPY EE1BOOT.BIN COM1/
B” to download EE1BOOT into the RAM of the
HC05B6. EE1BOOT will now start to execute.

5) Start the program E2B6 on the PC and follow the
instructions to download the desired S-records to
the EEPROM1 of the 68HCO05B6.

Note:

i) Only the download procedure of E2B6 will work in
conjunction with EE1BOOT.

ii} Once the EEPROM1 security bit has been set, the
RAM bootloader on the 68HC05B6 will no longer op-
erate. This means that after the device has been reset
it will be impossible to download any more data into
the EEPROM1 until selfcheck has been executed -
selfcheck performs an erase of the entire EEPROM1
array. This means that if the EEPROMT1 is to be pro-
grammed in several steps, the one that will set the
security bit should be done last.

FURTHER POSSIBILITIES

This application note has shown a method for initialis-
ing the EEPROM1 on the 6BHC0O5B6 by using the
RAM bootloader. It would of course be much simpler
to incorporate a EEPROM1 bootloader in the ROM
space of the user program, but often there is not

enough space. If enough space is available {117
bytes), then EE1BOOT could be incorporated in the
application software, thus saving steps 2, 3 &4 in the
procedure above.

MOTOROLA AN434/D
4

PROCEDURE
BINWRITE

ADJUST LENGTH FOR

ADDRESS & CHECKSUM
1
N
MAIN
PROGRAM Y v
GET NEXT
BEGIN 2 C\Hﬁﬂs END
INPUT FILE N [LENGTH = LENGTH-2]
NAMES

1 PROCEDURE CALC-HEX

OPEN FILES & INITIALISE:
QUIT=FALSE, COUNTBYT=1 -CONVERT T"']ESE 2 TO HEX
1

WRITE HEX TO
TEMPF
1
N
/7
READ NEXT S-REC
& ECHO TO SCREEN
QUIT = TRUE
WRITE ERROR MESSAGE [7
™ WRITE BEGIN N
OR END MESSAGE v4
QUIT = TRUE N
WRITE ERROR MESSAGE[7?
READ 2 RECORD LENGTH
CHARS & CONVERT TO HEX
PROCEDURE ‘BINWRITE -
CONVERT REST OF S-REC 2 P
TO BINARY & STORE IN TEMPF WRITE COUNTBYTE TO w ﬁ
OUTPUT FILE & ECHO
vV TO SCREEN
COPY BINARY DATA FROM
TEMPF TO OUTPUT FILE
ERASE TEMPF &
CLOSE INPUT &
OUTPUT FILES
Figure 2. Flow diagram of BINCONV
AN434/D MOTOROLA

5

0001 AR AR AR R R AR R A RN AR A AN R AR R RN A AN A AR KRR AR A A A AN AR RN R AR AR R AN R R AR A NN RRRRRRAR AR

0002 *EEELLLLLLLLLLLLSLLLALLLIBBIELLIILLITLILLLLTLLLLLLLLLLLLILTEHTIHD8888%%%>
0003 *% $*
0004 *3% EE1BOOT — 68HCO5B6 EEPROM1 Serial bootloader $*
0005 *% $*
0006 *% - This prog. is loaded into the RAM of the HCO05B6 via the RAM $*
0007 *% bootloader. The program will then start to execute. The format %*
0008 *% has been selected to be the same as that on the 805B6 sc that $*
0009 *% the program E2B6 can be used to program the EEPROM1. $*
0010 *$ Note: E2B6 sends a null character during initialisaton so this prog &*
0011 *% ignores the first character received on the SCI. £
0012 *3$ $*
0013 *% $*
0014 *% Jeff Wright Last Updated 10/5/90 $*
0015 *$ $*
0016 *EEEEELLTELLLLLELEEHLLLEBLEELIBLHEIBBLEFLILLTELLLHTLILHLBHBTI2ITBB388388>
0017 EE R R R s R R RS R RS R s
0018

0019

0020 **xxwxxxxxx T/0 and INTERNAL registers definition ***wxwsxsxaxkwkssxsnrins
0021 *

0022 *

0023 - 1/0 registers

0024 =

0025 0000 PORTA EQU $00 port A.

0026 0001 PORTB EQU $01 port B.

0027 0002 PORTC EQU $02 port C.

0028 0003 PORTD EQU $03 port D.

0029 0004 DDRA EQU $04 port A DDR.

0030 0005 DDRB EQU $05 port B DDR.

0031 0006 DDRC EQU $06 port C DDR.

0032

0033 0007 EECONT EQU $07

0034 0002 E1ERA EQU 2

0035 0001 E1LAT EQU 1

0036 0000 E1PGM EQU 0

0037

0038 000d BAUD EQU $0D

0039 000e SCCR1 EQU SOE

0040 0004 MBIT EQU 4

0041 000f SCCR2 EQU $OF

0042 0010 SCSR EQU s10

0043 0005 RDRF EQU 5

0044 0011 SCDAT EQU $11

0045 *

0046 * TIMER registers

0047 >

0048 0012 TCR EQU $12 Timer control register.

0049 0005 TOIE EQU 5 Timer overflow interrupt enable.

0050 0006 OCIE EQU 6 Timer output compares interrupt enable.

0051 0007 ICIE EQU 7 Timer input captures interrupt enable.

0052

MOTOROLA AN434/D
6

0053 0013 TSR EQU $13 Timer status register.

0054 0003 OCF2 EQU 3 Timer output compare 2 flag.

0055 0004 ICF2 EQU 4 Timer input capture 2 flag.

0056 0005 TOF EQU 5 Timer overflow flag.

0057 0006 OCF1 EQU 6 Timer output compare 1 flag.

0058 0007 ICFl EQU 7 Timer input capture 1 flag.

0059

0060 0016 TOC1HI EQU $16 Timer output compare register 1 (16-bit).
0061 0017 TOC1LO EQU s$17

0062 0018 TIMHI EQU s$18 Timer free running counter (16-bit).

0063 0019 TIMLO EQU s$19

0064

0065 *xx*x MISC DEFINITIONS —

0066

0067 00cé6 LDAEXT EQU $C6 OP-Code for LDA extended.

0068 0014 Ms10 EQU $14 10mS delay constant.

0069

0070 >

0071

0072 AR AR AR A AR R R R A AR AR AN AR R R AR AR AR AR AR AN AN IR AR RN AN AR RRARARARNRNRAARN RN AN NN ANk
0073 * *

0074 * START OF CODE *

0075 * *

0076 AKX AKX AT XA R R A KA R AR R R R RN AR AR AR AR AR AR AR AN R AR AN AR AR AN AR AR ANNRAR AT AARANRRRRN
0077

0078 0051 ORG $51

0079

0080 0051 a6 00 RESET LDA #$00

0081 0053 b7 04 STA DDRA All Ports inputs.

0082 0055 b7 05 STA DDRB

0083 0057 b7 06 : STA DDRC

0084

0085 0059 19 Oe SCIINT BCLR MBIT, SCCR1 Initialise SCI - 8 data bits.

0086 005b a6 cO 1DA #SCO

0087 005d b7 0d STA BAUD 9600 baud at 4MHz.

0088 005f a6 Oc LDA #S0C Enable transmit and receive.

0089 0061 b7 Of STA SCCR2

0090 0063 b7 10 STA SCSR Clear pending flags.

0091 0065 a6 c6 LDA #LDAEXT Init extended addressing subroutine to LDA.
0092 0067 c7 00 8f STA OPCDE

0093 006a ad 1d BSR SCREAD Wait here and ignore lst char (E2B6 init).
0094

0095 006c ad 21 LooP BSR EXTSUB Load Acc with data from last programmed addr
0096 006e b7 11 STA SCDAT Send it back for host to verify.

0097 0070 ad 17 BSR SCREAD Get high address

0098 0072 c7 00 90 STA ADDHI - and store it.

0099 0075 ad 12 BSR SCREAD Get low address

0100 0077 ¢7 00 91 STA ADDLO - and store it.

0101 007a ad 0d BSR SCREAD Get the data to be programmed

0102 007¢c c7 00 93 STA DATA Store it temporarily.

0103 007f 3c 8f INC OPCDE Change the ext addr subroutine to STA aaaa.
0104 0081 ad 11 BSR ERASEE Erase the selected address for 10ms.
0105 0083 ad 27 BSR PROGEE Now prog the data for 10mS.

0106 0085 3a 8f DEC OPCDE Restote ext addr subroutine to LDA aaaa.
0107 0087 20 e3 BRA Loop

0108

AN434/D MOTOROLA
7

0109 axxaxxrxnncxkcxrxsxxnxwx*xx SUBROUTINE TOSERVICE SCI * ¥ A X A A A A x A A X A ARK A K NN AN KA XN R KX N X

0110

0111 0089 Ob 10 fd SCREAD BRCLR RDRF, SCSR, *

0112 008c b6 11 LDA SCDAT

0113 008e 81 RTS

0114

0115

0116 *xxaxwxxsarr* PXTENDED ADDRESSING SUBROUTINE TO ACCESS FULL MEMORY MAP ***x* & ansaas
0117

0118 008f EXTSUB EQU *

0119 008f 00 OPCDE FCB 0

0120 0090 00 ADDHI FCB 0

0121 0091 00 ADDLO FCB o]

0122 0092 81 RTS

0123

0124 0093 00 DATA FCB o] Reserved Byte for data during erasing.
0125

0126 AARK XK R AAAARNR AR AR A AN NR AR EEl ERASING SUBROUTINE AAEERA AKX AARARAR A AR AARRARAN AN RN NN
0127

0128 0094 12 07 ERASEE BSET E1LAT, EECONT

0129 0096 14 07 BSET E1ERA, EECONT

0130 0098 ad f5S BSR EXTSUB

0131 009%9a a6 14 LDA #MS10

0132 009c 10 07 DEL1 BSET E1PGM, EECONT

0133 00%e b7 19 STA TIMLO Set up timer for a 10ms count

0134 00a0 b7 16 STA TOC1HI

0135 00a2 b7 13 STA TSR - using output compare 1 function.
0136 00a4 b7 17 STA TOC1LO

0137 00a6 0d 13 fd BRCLR OCF1,TSR,* Wait here for end of erase time
0138 00a9 3f 07 CLR EECONT - erase finsished.

0139 00ab 81 RTS

0140

0141 AR AR R SRS ER RS RS2 Egl PROGRAWING SUBROUTINE ARRAN AR R AT RRNRARRAAAR RN AN AR AR RN K
0142

0143 00ac 12 07 PROGEE BSET E1LAT, EECONT

0144 OOae bé 93 LDA DATA

0145 00bO ad dd BSR EXTSUB

0146 00b2 4c INCA

0147 00b3 27 0f BEQ SKIP Skip programming if data = S$FF

0148 00bS5 a6 14 LDA #MS10

0149 00b7 10 07 DEL BSET E1PGM, EECONT

0150 00b9 b7 19 STA TIMLO Set-up timer for 10mS count

0151 00bb b7 16 STA TOC1HI

0152 00bd b7 13 STA TSR - using output compare 1 function.
0153 00bf b7 17 STA TOC1LO

0154 00cl 0d 13 fd BRCLR OCF1, TSR, * Wait here for programming to finish.
0155 00c4 3f 07 SKIP CLR EECONT

0156 00cé6 81 RTS

MOTOROLA AN434/D
8

{**t***}

program BINCONV; { Programto convert Motorola S-record files to
binary format. Optional inclusion of a count byte for
HCO5B6 RAM bootloader etc}
{ Programmer - Jeff Wright, MCU applications
Motorola
East Kilbride}

{ Last Updated 10/5/90}

{**}

var
SrecFile : text;
BinFile : file;
Tempf : file;
srec : string[100};
Transfer : array[l..20000] of char;
numread, numwritten : word;
answer : char;
fnamei : string[l15];
fnameo : string[15];
bytout : char;
countbyt : integer;

datcnt : integer;
datval : integer;
point : integer;
cntl : integer;

cnt2 : integer;
quit : boolean;
Count : boolean;

{ }
Procedure Calc_hex(chrl,chr2 : integer);

{Combines 2 characters into a single byte value i.e A5->165, error
signaled if non hex character detected}

Begin

Case chrl of

48..57 : chrl := chrl - 48;

65..70 : chrl := chrl - 55; { Is this a valid hex character?}

else
begin
writeln (‘invalid data - conversion aborted’);
quit := true
end
end;

Case chr2 of
48..57 : chr2 := chr2 - 48;
65..70 : chr2 := chr2 - 55;

else
begin
writeln (‘invalid data - conversion aborted’);
quit := true
end

AN434/D MOTOROLA
9

end;
datval := chrl*16 + chr2; {Convert to single byte}
end;

{ }
Procedure Binwrite (length,dpoint : integer):

{Converts an S-record line to hex and stores it in a temporary file}

begin

length := length-3; {Allow for address and checksum bytes}
countbyt := countbyt+length; {Update running byte total}
length := length*2; {Twice as many characters as bytes}
while length > 0 do

begin

cntl := Ord(srec[dpoint]); {Get the next two characters}
cent2 := Ord(srec[dpoint+l]);

dpoint := dpoint+2; {Update pointer and length}
length := length-2;

Calc_hex(cntl,cnt2); {Convert two characters into single byte}
bytout := Chr (datval); {- now convert that single byte into a }
blockwrite (tempf,bytout,1l) {character and save it in temporary file}
end
end;

{*x*kkkkkkkkkkkkxx*x*x MATIN PROGRAM STARTS BELOW ****xkkkkkkkkkk kXX XXX KKk}

begin
writeln (‘S-record to Binary conversion utility’);
writeln;
writeln;
write(‘Input S-record file name? —> ‘);
readln (fnamei) ;
assign(SrecFile, fnamei);
write (' Binary output file name? —> ‘');
readln (fnameo) ;
assign (BinFile, fnameo);
assign(tempf, ‘temp.tmp’):;
quit := false;
countbyt := 1;

Reset (SrecFile); {open the two }
Rewrite (BinFile, 1) { -selected files}
Rewrite (tempf, 1) { + a temporary file}

MOTOROLA AN434/D
_ 10

while not Eof (SrecFile) and not quit do

begin
readln (SrecFile, srec); {read S-rec into char string srec}
writeln(srec);

If srec[l)='S’'then {If string does not start with S then quit}
begin
CASE srec[2] of
1o {If not S1 record then loop back}
begin
cntl := Ord(srec{3]); {get the 2 record length}
cnt2 := Ord(srec([4]):; {characters}

calc_hex(cntl,cnt2); {func to produce hex in
datent from cntl & 2}
datcnt := datval;
peoint := 9; {point to first data character}
binwrite (datent,point) { convert the data in this s-rec
line to binary and store in temp file}

end;
‘0’ : writeln (‘Conversion started’);
‘9’ : writeln (‘last S-record done’);
else)
begin {If not SO0,SlorS9 record then abort}
quit := true;
writeln (‘Non standard S-record detected - Conversion aborted’)
end
end
end
else
begin {If 1st char not an S then abort}
quit := true;
writeln (‘Non standard S-record detected - Conversion aborted’)
end

end;
If quit = false then

{If no errors then copy the temporary file to the output file and add in
a count byte if required}

begin
Reset (tempf,1l1):;
writeln;
write (‘Do you want a count byte added to start of output file? —> ‘');
readln (answer);
If upcase (answer) = ‘Y’ then
Begin
writeln (‘Total size including count byte = ‘,countbyt);
bytout := chr(countbyt);
blockwrite (binfile,bytout, 1)
end;
repeat :
blockread (tempf,transfer,sizeof (transfer),numread);
blockwrite (binfile,transfer,numread,numwritten);
until (numread=0) or (numwritten <> numread)
end;

close (tempf) ;

erase (tempf) ; {Finished with temporary file so erase it}
close(SrecFile);
close (BinFile) {Close files before quiting}

end.

AN434/D MOTOROLA
11

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights
of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and
hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola,
Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong.

- @ MOTOROLA

A30051 PRINTED IN USA 3/91 IMPERIAL LITHO 77977 5,000 ASIC YNAROO AN434ID

	
	
	
	
	
	
	
	
	
	
	
	

