12-Bit Parity Tree The MC14531B 12–bit parity tree is constructed with MOS P–channel and N–channel enhancement mode devices in a single monolithic structure. The circuit consists of 12 data–bit inputs (D0 thru D11), and even or odd parity selection input (W) and an output (Q). The parity selection input can be considered as an additional bit. Words of less than 13 bits can generate an even or odd parity output if the remaining inputs are selected to contain an even or odd number of ones, respectively. Words of greater than 12–bits can be accommodated by cascading other MC14531B devices by using the W input. Applications include checking or including a redundant (parity) bit to a word for error detection/correction systems, controller for remote digital sensors or switches (digital event detection/correction), or as a multiple input summer without carries. - Supply Voltage Range = 3.0 Vdc to 18 Vdc - All Outputs Buffered - Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load Over the Rated Temperature Range - Variable Word Length - · Diode Protection on All Inputs ## MAXIMUM RATINGS* (Voltages Referenced to VSS) | Symbol | Parameter | Value | Unit | |------------------------------------|--|--------------------------------|------| | V_{DD} | DC Supply Voltage | - 0.5 to + 18.0 | V | | V _{in} , V _{out} | Input or Output Voltage (DC or Transient) | - 0.5 to V _{DD} + 0.5 | V | | I _{in} , I _{out} | Input or Output Current (DC or Transient), per Pin | ± 10 | mA | | PD | Power Dissipation, per Package† | 500 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature (8–Second Soldering) | 260 | °C | ^{*} Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: Plastic "P and D/DW" Packages: -7.0 mW/°C From 65°C To 125°C Ceramic "L" Packages: -12 mW/°C From 100°C To 125°C #### LOGIC DIAGRAM $Q = D0 \oplus D1 \oplus D2 \oplus \cdots \oplus D11 \oplus W$ # MC14531B L SUFFIX CERAMIC CASE 620 P SUFFIX PLASTIC CASE 648 D SUFFIX SOIC CASE 751B #### ORDERING INFORMATION MC14XXXBCP Plastic MC14XXXBCL Ceramic MC14XXXBD SOIC $T_A = -55^{\circ}$ to 125°C for all packages. ## **TRUTH TABLE** | Inputs | | | | | | | | Output | |--------|-----|-----|---|----|----|----|----------------------------------|--------| | w | D11 | D10 | | D2 | D1 | D0 | Decimal
(Octal)
Equivalent | Q* | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 (0) | 0 | | 0 | 0 | 0 | | 0 | 0 | 1 | 1 (1) | 1 | | 0 | 0 | 0 | | 0 | 1 | 0 | 2 (2) | 1 | | 0 | 0 | 0 | | 0 | 1 | 1 | 3 (3) | 0 | | 0 | 0 | 0 | | 1 | 0 | 0 | 4 (4) | 1 | | 0 | 0 | 0 | | 1 | 0 | 1 | 5 (5) | 0 | | 0 | 0 | 0 | | 1 | 1 | 0 | 6 (6) | 0 | | 0 | 0 | 0 | | 1 | 1 | 1 | 7 (7) | 1 | | * | * | * | * | * | * | * | * | * | | * | * | * | l | * | * | * | * | * | | * | * | * | * | * | * | * | * | * | | 1 | 1 | 1. | | 0 | 0 | 0 | 8184 (17770 |) 0 | | 1 | 1 | 1 | | 0 | 0 | 1 | 8185 (17771 |) 1 | | 1 | 1 | 1 | | 0 | 1 | 0 | 8186 (17772 |) 1 | | 1 | 1 | 1 | | 0 | 1 | 1 | 8187 (17773 |) 0 | | 1 | 1 | 1 | | 1 | 0 | 0 | 8188 (17774 |) 1 | | 1 | 1 | 1 | | 1 | 0 | 1 | 8189 (17775 | 0 | | 1 | 1 | 1 | | 1 | 1 | 0 | 8190 (17776 | | | 1 | 1 | 1 | | 1 | 1 | 1 | 8191 (17777 |) 1 | *0 = Even Parity 1 = Odd Parity NOTE: May redefine to suit application by manipulating W and/or other available D's. **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | | | | V _{DD} | - 55°C | | 25°C | | | 125°C | | | |---|-----------|------------------|------------------------|-----------------------------------|----------------------|-----------------------------------|---|----------------------|-----------------------------------|----------------------|------| | Characteristic | | Symbol | Vdc | Min | Max | Min | Typ # | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | VOL | 5.0
10
15 | _
_
_ | 0.05
0.05
0.05 | _
_
_ | 0
0
0 | 0.05
0.05
0.05 | _
_
_ | 0.05
0.05
0.05 | Vdc | | $V_{in} = 0$ or V_{DD} | "1" Level | VOH | 5.0
10
15 | 4.95
9.95
14.95 | _
_
_ | 4.95
9.95
14.95 | 5.0
10
15 | _
_
_ | 4.95
9.95
14.95 | _
_
_ | Vdc | | Input Voltage
(V _O = 4.5 or 0.5 Vdc)
(V _O = 9.0 or 1.0 Vdc)
(V _O = 13.5 or 1.5 Vdc) | "0" Level | V _I L | 5.0
10
15 | _
_
_ | 1.5
3.0
4.0 | | 2.25
4.50
6.75 | 1.5
3.0
4.0 | | 1.5
3.0
4.0 | Vdc | | (V _O = 0.5 or 4.5 Vdc)
(V _O = 1.0 or 9.0 Vdc)
(V _O = 1.5 or 13.5 Vdc) | "1" Level | VIH | 5.0
10
15 | 3.5
7.0
11 | _ | 3.5
7.0
11 | 2.75
5.50
8.25 | _ | 3.5
7.0
11 | = | Vdc | | Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc) | Source | ІОН | 5.0
5.0
10
15 | - 3.0
- 0.64
- 1.6
- 4.2 | _
_
_
_ | - 2.4
- 0.51
- 1.3
- 3.4 | - 4.2
- 0.88
- 2.25
- 8.8 | _
_
_
_ | - 1.7
- 0.36
- 0.9
- 2.4 | _
_
_
_ | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$
$(V_{OL} = 0.5 \text{ Vdc})$
$(V_{OL} = 1.5 \text{ Vdc})$ | Sink | lOL | 5.0
10
15 | 0.64
1.6
4.2 | _
_
_ | 0.51
1.3
3.4 | 0.88
2.25
8.8 | _
_
_ | 0.36
0.9
2.4 | _
_
_ | mAdc | | Input Current | | l _{in} | 15 | _ | ± 0.1 | _ | ±0.00001 | ± 0.1 | _ | ± 1.0 | μAdc | | Input Capacitance
(V _{in} = 0) | | C _{in} | _ | _ | _ | _ | 5.0 | 7.5 | _ | _ | pF | | Quiescent Current
(Per Package) | | IDD | 5.0
10
15 | _
_
_ | 5.0
10
20 | = | 0.005
0.010
0.015 | 5.0
10
20 | _
_
_ | 150
300
600 | μAdc | | Total Supply Current**† (Dynamic plus Quiesco Per Package) (C _L = 50 pF on all outp buffers switching) | · | ΙΤ | 5.0
10
15 | | | $I_T = (0$ | .25 μA/kHz)
.50 μA/kHz)
.75 μA/kHz) | f + I _{DD} | • | | μAdc | #Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. ### ^{**} The formulas given are for the typical characteristics only at 25 $^{\circ}\text{C}.$ [†]To calculate total supply current at loads other than 50 pF: # SWITCHING CHARACTERISTICS* ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$) | Characteristic | Symbol | V _{DD} | Min | Тур# | Max | Unit | |---|---------------|-----------------|-------------|-------------------|--------------------|------| | Output Rise and Fall Time t_{TLH} , t_{THL} = (1.6 ns/pF) C_L + 25 ns t_{TLH} , t_{THL} = (0.75 ns/pF) C_L + 12.5 ns t_{TLH} , t_{THL} = (0.55 ns/pF) C_L + 9.5 ns | tTLH,
tTHL | 5.0
10
15 | _
_
_ | 100
50
40 | 200
100
80 | ns | | Propagation Delay Time Data to Q tp_H, tpHL = (1.7 ns/pF) C _L + 355 ns tp_H, tpHL = (0.66 ns/pF) C _L + 142 ns tp_H, tpHL = (0.5 ns/pF) C _L + 95 ns Odd/Even to Q | tPLH,
tPHL | 5.0
10
15 | _
_
_ | 440
175
120 | 1320
525
360 | ns | | t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 165 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 67 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 45 ns | | 5.0
10
15 | _
_
_ | 250
100
70 | 750
300
210 | | ^{*} The formulas given are for the typical characteristics only at 25°C. Figure 1. Dynamic Power Dissipation Signal Waveform Figure 2. Dynamic Signal Waveforms [#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. # **OUTLINE DIMENSIONS** # **L SUFFIX** CERAMIC DIP PACKAGE CASE 620-10 ISSUE V #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. DIMENSION F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC | | INC | HES | MILLIN | IETERS | | |-----|-------|---------|----------|--------|--| | DIM | MIN | MIN MAX | | MAX | | | Α | 0.750 | 0.785 | 19.05 | 19.93 | | | В | 0.240 | 0.295 | 6.10 | 7.49 | | | С | | 0.200 | | 5.08 | | | D | 0.015 | 0.020 | 0.39 | 0.50 | | | Е | 0.050 | BSC | 1.27 BSC | | | | F | 0.055 | 0.065 | 1.40 | 1.65 | | | G | 0.100 |) BSC | 2.54 BSC | | | | Н | 0.008 | 0.015 | 0.21 | 0.38 | | | K | 0.125 | 0.170 | 3.18 | 4.31 | | | L | 0.300 | BSC | 7.62 | BSC | | | М | 0° | 15° | 0 ° | 15° | | | N | 0.020 | 0.040 | 0.51 | 1.01 | | # **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE R ### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | | |-----|-------|-------|----------|--------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | | В | 0.250 | 0.270 | 6.35 | 6.85 | | | С | 0.145 | 0.175 | 3.69 | 4.44 | | | D | 0.015 | 0.021 | 0.39 | 0.53 | | | F | 0.040 | 0.70 | 1.02 | 1.77 | | | G | 0.100 | BSC | 2.54 BSC | | | | Н | 0.050 | BSC | 1.27 BSC | | | | J | 0.008 | 0.015 | 0.21 | 0.38 | | | K | 0.110 | 0.130 | 2.80 | 3.30 | | | L | 0.295 | 0.305 | 7.50 | 7.74 | | | M | 0° | 10° | 0° | 10 ° | | | S | 0.020 | 0.040 | 0.51 | 1.01 | | ### **OUTLINE DIMENSIONS** - DIMENSIONING AND TOLERANCING PER ANSI - CONTROLLING DIMENSION: MILLIMETER. - DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) - PER SIDE. - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | G | 1.27 | BSC | 0.050 BSC | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | М | 0° | 7° | 0° | 7° | | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912: Phoenix. Arizona 85036. 1-800-441-2447 or 602-303-5454 MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298