Advance Information **Dual PLLs for 46/49 MHz Cordless Telephones CMOS**

These devices are dual phase-locked loop frequency synthesizers intended for use primarily in 46/49 MHz cordless phones with up to 15 channels. These parts contain two mask-programmable counter ROMs for receive and transmit loops with two independent phase detect circuits. A common reference oscillator and reference divider are shared by the receive and transmit circuits.

Other features include a lock detect circuit for the transmit loop, illegal code default, a buffered oscillator output for mixing purposes in the system, and a 5.0 kHz tone output.

- Maximum Operating Frequency: 60 MHz @ Vin = 200 mV p-p
- Operating Temperature Range: 40 to + 75°C
- Operating Voltage Range: 2.5 to 5.5 V
- On-Chip Oscillator Circuit Supports External Crystal
- Operating Power Consumption: 3.0 mA @ 3.0 V
- Lock Detect Signal
- Standby Mode for Power Savings: 1.5 mA @ 3.0 V
- Two Versions:
 - MC145168 Up to 15-Channel ROM with 4-Bit Binary Code Input for **Channel Pair Selection**
 - MC145169 Up to 15–Channel ROM with Serial Interface for Channel Pair Selection
- Custom 20-Channel ROM Versions of the MC145169 are Possible; **Consult Factory**

	MC145168			MC	145169
osc _{out} [1• 16	osc _{in}	OSC _{out}	1•	16] OSC _{in}
MODE [2 15		MODE [2	15 🛛 V _{DD}
ѕв [3 14	₽ f _{in1}	SB [3	14 🛛 f _{in1}
5 k [4 13] PD1	5 k [4	13 🛛 PD1
D0 [5 12] ∨ _{SS}	DATA [5	12 🛛 V _{SS}
D1 [6 11] PD2	CLK [6	11 🛛 PD2
D2 [7 10		NC [7	10] LD
D3 [8 9] f _{in2}	ENB [8	9 🛛 f _{in2}
L		-			

PIN ASSIGNMENTS

NC = NO CONNECTION

This document contains information on a new product. Specifications and information herein are subject to change without notice.

IOTOROLA

MC14	5169
16 1	P SUFFIX PLASTIC DIP CASE 648
16 1 16 1	DW SUFFIX SOG PACKAGE CASE 751G
ORDERING IN	IFORMATION
MC145168P MC145168DW	

MC145168

MC145169P Plastic DIP MC145169DW SOG Package

REV 1 8/95

© Motorola, Inc. 1995

*On-chip pull-down.

** The standard MC145169 is 15 channels; see Tables 1 and 2. Custom versions up to 20 channels are possible.

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Rating	Value	Unit
V _{DD}	DC Supply Voltage	– 0.5 to + 6.0	V
V _{in}	Input Voltage, All Inputs	– 0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	DC Current Drain Per Pin	10	mA
I _{DD} , ISS	DC Current Drain V_{DD} or V_{SS} Pins	30	mA
T _{stg} Storage Temperature Range		– 65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} \leq (V_{in} or V_{out}) \leq V_{DD}.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS}, T_A = 25°C)

				Guarante		
Symbol	Characteristic	V _{DD}	Min	Мах	Uni	
V _{DD}	Power Supply Voltage Range	_	2.5	5.5	V	
VOL	Output Voltage (I _{out} = 0)	0 Level	2.5 5.5	_	0.05 0.05	V
VOH	$(V_{in} = V_{DD} \text{ or } 0)$	1 Level	2.5 5.5	2.45 5.45		1
VIL	Input Voltage (V _{out} = 0.5 V or V _{DD} – 0.5 V)	0 Level	2.5 5.5	_	0.75 1.65	V
VIH		1 Level	2.5 5.5	1.75 3.85	—	
ЮН	Output Current $(V_{out} = 2.2 V)$ $(V_{out} = 5.0 V)$	Source	2.5 5.5	- 0.18 - 0.55	—	mA
IOL	(V _{out} = 0.3 V) (V _{out} = 0.5 V)	Sink	2.5 5.5	0.18 0.55		
Ι _{ΙL}	Input Current (V _{in} = 0)	OSC _{in} , f _{in1} , f _{in2}	2.5 5.5	_	- 30 - 66	μΑ
		DATA, SB, Mode	2.5 5.5	_	- 0.05 - 0.11	
ΙΙΗ	$(V_{in} = V_{DD} - 0.5)$	OSC _{in} , f _{in1} , f _{in2}	2.5 5.5	_	30 66	μΑ
		DATA, SB, Mode	2.5 5.5	_	50 121	
C _{in}	Input Capacitance		_	—	14.0	pF
Cout	Output Capacitance		_	_	8.0	pF
IDD	Standby Current, $\overline{SB} = V_{SS}$ or Open		2.5 5.5	_	1.4 3.6	mA
Idd	Operating Current (200 mV p–p input at f _{in1} , f _{in2} , SB = V _{DD})		2.5 5.5	_	2.8 6.2	mA
I _{OZ}	Three–State Leakage Current (V _{out} = 0 V or 5.5 V)		5.5	-	± 1.0	μΑ

SWITCHING CHARACTERISTICS (T_A=25°C, C_L=50 pF)

		Figure		Guarante	eed Limit	
Symbol	Characteristic	No.	V _{DD}	Min	Max	Unit
^t TLH	Output Rise Time	1, 5	3.0 5.0		200 100	ns
^t THL	Output Fall Time	1, 5	3.0 5.0		200 100	ns
t _r , t _f	Input Rise and Fall Time, OSC _{in}	2	3.0 5.0		5.0 4.0	μs
fmax	Input Frequency OSC _{in} Input = Sine Wave 200 mV p–p f _{in1} fin2		3.0 - 5.0 3.0 - 5.0 3.0 - 5.0	 	12 60 60	MHz
t _{su}	Setup Time (MC145169) DATA to CLK	3	3.0 5.0	100 50		ns
	ENB to CLK	3	3.0 5.0	200 100		
th	Hold Time (MC145169), CLK to DATA	3	3.0 5.0	80 40		ns
trec	Recovery Time (MC145169), ENB to CLK	3	3.0 5.0	80 40		ns
tw	Input Pulse Width (MC145169), CLK and ENB	4	3.0 5.0	80 60	_	ns

SWITCHING WAVEFORMS

PIN DESCRIPTIONS

INPUT PINS

OSCin/OSCout Reference Oscillator Input/Output (Pins 16, 1)

These pins form a reference oscillator when connected to an external parallel–resonant crystal. For a 46/49 MHz cordless phone application, a 10.24 MHz crystal is needed. OSC_{in} may also serve as input for an externally generated reference signal. This signal is typically ac coupled to OSC_{in} , but for larger amplitude signals (standard CMOS logic levels) dc coupling may also be used. In the external reference mode, no connection is required for OSC_{out} .

MODE

Mode Select (Pin 2)

Mode is for determining whether the part is to be used in the base or handset of a cordless phone. Internally, this pin is used in the decoding logic for selecting the ROM address. When high, the device is set in the base mode, and when low, it is set in the handset mode. This input has an internal pull-down device.

SB

Standby (Pin 3)

The standby pin is used to save power when not transmitting. When high, both the transmit and receive loops are in operation. When low, the transmit loop is disabled, thereby reducing power consumption. This input has an internal pull– down device.

D0 – D3 (MC145168 Only) Data Inputs (Pins 5, 6, 7, 8)

These inputs provide the 4-bit binary code for selecting the 1 of 15 channels for the transmit and receive loops. When address data other than 1 - 15 are input, the decoding logic defaults to channel 1. The frequency assignments, with reference to Mode and D0 – D3, are shown in Tables 1 and 2. These inputs have internal pull-down devices.

fin1, fin2

Frequency Inputs (Pins 14, 9)

 f_{in1} and f_{in2} are inputs to the divide–by–N receive and transmit counters, respectively. These signals are typically derived from the loop VCO and are ac coupled. The minimum input level is 200 mV p–p. For larger amplitude signals (standard CMOS logic levels), dc coupling may be used.

DATA, CLK (MC145169 Only) Data, Clock (Pins 5, 6)

These pins provide the binary input by using serial channel programming. A logic high represents a 1. Each low-to-high transition of the clock shifts one bit of data into the on-chip shift register. Data is entered MSB first (see Figure 3).

ENB (MC145169 Only) Enable (Pin 8)

The enable pin controls the data transfer from the shift register to the latch. A positive pulse transfers the data. This pin should normally be held low to avoid loading erroneous data into the latch.

OUTPUT PINS

5 k

5-kHz Tone Signal (Pin 4)

This is a 5 kHz tone signal derived from the reference oscillator. This pin is a push–pull output.

LD

Lock Detect Signal (Pin 10)

The lock detect signal is associated with the transmit loop. The lock output goes high to indicate an out–of–lock condition. This is a P–channel open–drain output.

PD1/PD2

Transmit/Receive Phase Detector Outputs (Pins 13, 11)

These are three–state outputs of the transmit and receive phase detectors for use as loop error signals. Phase detector gain is $V_{DD}/4 \pi$ volts per radian.

- Frequency $f_V > f_\Gamma$ or f_V leading: negative pulses
- Frequency $f_V < f_\Gamma$ or f_V lagging: positive pulses
- Frequency $f_V = f_T$ and phase coincidence: high-impedance state
- NOTE: f_V is the output of the N counter. f_r is the output of the reference counter.

POWER SUPPLY

V_{DD} (Pin 15)

This pin is the positive supply potential and may range from +2.5 to +5.5 V with respect to VSS.

V_{SS} (Pin 12)

This pin is the negative supply potential and is usually ground.

	С	hanne	ls		RX Freg	Receive	(Note 3)	TX Freg	Tran	smit	
D3	D2	D1	D0	CH#	(MHz)	f _{in1} (MHz)	\div N	(MHz)	f _{in2} (MHz)	\div N	Mode
0	0	0	1	1	46.610	35.915	7183	49.670	49.670	9934	0
0	0	1	0	2	46.630	35.935	7187	49.845	49.845	9969	0
0	0	1	1	3	46.670	35.975	7195	49.860	49.860	9972	0
0	1	0	0	4	46.710	36.015	7203	49.770	49.770	9954	0
0	1	0	1	5	46.730	36.035	7207	49.875	49.875	9975	0
0	1	1	0	6	46.770	36.075	7215	49.830	49.830	9966	0
0	1	1	1	7	46.830	36.135	7227	49.890	49.890	9978	0
1	0	0	0	8	46.870	36.175	7235	49.930	49.930	9986	0
1	0	0	1	9	46.930	36.235	7247	49.990	49.990	9998	0
1	0	1	0	10	46.970	36.275	7255	49.970	49.970	9994	0
1	0	1	1	11	46.510	35.815	7163	49.695	49.695	9939	0
1	1	0	0	12	46.530	35.835	7167	49.710	49.710	9942	0
1	1	0	1	13	46.550	35.855	7171	49.725	49.725	9945	0
1	1	1	0	14	46.570	35.875	7175	49.740	49.740	9948	0
1	1	1	1	15	46.590	35.895	7179	49.755	49.755	9951	0

 Table 1. Handset Frequencies of Each Corresponding Channel in a 46/49 MHz

 Cordless Phone for the Korean Market

NOTES:

1. 0 = logic low, 1 = logic high.

2. Power-up and illegal inputs are defaulted to channel 1 in the MC145169. Illegal inputs are defaulted to channel 1 in MC145168.

3. First IF frequency of receive is 10.695 MHz; second IF is 455 kHz.

4. \div N = (f_{in}/f_{ref}) where f_{in} is the VCO frequency and f_{ref} is the reference frequency (5.0 kHz).

Table 2. Base Frequencies of Each Corresponding Channel in a 46/49 MHz
Cordless Phone for the Korean Market

	С	hanne	ls		RX Freq	Receive	(Note 3)	TX Freq	Transmit		
D3	D2	D1	D0	CH#	(MHz)	f _{in1} (MHz)	\div N	(MHz)	f _{in2} (MHz)	$\div N$	Mode
0	0	0	1	1	49.670	38.975	7795	46.610	46.610	9322	1
0	0	1	0	2	49.845	39.150	7830	46.630	46.630	9326	1
0	0	1	1	3	49.860	39.165	7833	46.670	46.670	9334	1
0	1	0	0	4	49.770	39.075	7815	46.710	46.710	9342	1
0	1	0	1	5	49.875	39.180	7836	46.730	46.730	9346	1
0	1	1	0	6	49.830	39.135	7827	46.770	46.770	9354	1
0	1	1	1	7	49.890	39.195	7839	46.830	46.830	9366	1
1	0	0	0	8	49.930	39.235	7847	46.870	46.870	9374	1
1	0	0	1	9	49.990	39.295	7859	46.930	46.930	9386	1
1	0	1	0	10	49.970	39.275	7855	46.970	46.970	9394	1
1	0	1	1	11	49.695	39.000	7800	46.510	46.510	9302	1
1	1	0	0	12	49.710	39.015	7803	46.530	46.530	9306	1
1	1	0	1	13	49.725	39.030	7806	46.550	46.550	9310	1
1	1	1	0	14	49.740	39.045	7809	46.570	46.570	9314	1
1	1	1	1	15	49.755	39.060	7812	46.590	46.590	9318	1

NOTES:

1. 0 = logic low, 1 = logic high.

2. Power-up and illegal inputs are defaulted to channel 1 in the MC145169. Illegal inputs are defaulted to channel 1 in MC145168.

3. First IF frequency of receive is 10.695 MHz; second IF is 455 kHz.

4. \div N = (f_{in}/f_{ref}) where f_{in} is the VCO frequency and f_{ref} is the reference frequency (5.0 kHz).

Figure 6. DPLL Application in 46/49 MHz Cordless Phone 15–Channel Base

P SUFFIX PLASTIC DIP CASE 648-08

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

UIMENSIONING AND TOLENANDING FEILAND, Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION LTO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
Κ	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
Μ	0°	10 °	0 °	10 °	
S	0.020	0.040	0.51	1.01	

DW SUFFIX SOG PACKAGE CASE 751G-02

NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD DODATIONICAL

PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER

MAXIMUM MOLD FROM CLUE AMBAR SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES		
DIM	MIN MAX		MIN	MAX	
Α	A 10.15 10.45		0.400	0.411	
В	B 7.40 7.60		0.292	0.299	
С	2.35	2.65	0.093	0.104	
D	0.35	0.49	0.49 0.014		
F	0.50	0.90	0.020	0.035	
G	1.27	BSC	0.050 BSC		
J	0.25	0.32	0.010	0.012	
Κ	0.10	0.25	0.004	0.009	
М	M 0° 7°		0 °	7 °	
Р	10.05	10.55	0.395	0.415	
R	0.25	0.75	0.010	0.029	

This page intentionally left blank.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death maleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "" are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

 \Diamond

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

