PECL/TTL-TTL 1:8 Clock Distribution Chip

The MC10H/100H646 is a single supply, low skew translating 1:8 clock driver. Devices in the Motorola H600 translator series utilize the 28-lead PLCC for optimal power pinning, signal flow through and electrical performance. The single supply H646 is similar to the H643, which is a dual supply 1:8 version of the same function.

- PECL/TTL-TTL Version of Popular ECLinPS™ E111
- Low Skew
- Guaranteed Skew Spec
- Tri-State Enable
- Differential Internal Design
- VBB Output
- Single Supply
- Extra TTL and ECL Power/Ground Pins
- Choice of ECL Compatibility: MECL 10H (10Hxxx) or 100K (100Hxxx)
- Matched High and Low Output Impedance
- Meets Specifications Required to Drive the Pentium[™] Microprocessor

The H646 was designed specifically to drive series terminated transmission lines. Special techniques were used to match the HIGH and LOW output impedances to about 70hms. This simplifies the choice of the

termination resistor for series terminated applications. To match the HIGH and LOW output impedances, it was necessary to remove the standard IOS limiting resistor. As a result, the user should take care in preventing an output short to ground as the part will be permanently damaged.

The H646 device meets all of the requirements for driving the 60 and 66MHz Pentium Microprocessor. The device has no PLL components, which greatly simplifies its implementation into a digital design. The eight copies of the clock allows for point-to-point clock distribution to simplify board layout and optimize signal integrity.

The H646 provides differential PECL inputs for picking up LOW skew PECL clocks from the backplane and distributing it to TTL loads on a daughter board. When used in conjunction with the MC10/100E111, very low skew, very wide clock trees can be designed. In addition, a TTL level clock input is provided for flexibility. Note that only one of the inputs can be used on a single chip. For correct operation, the unused input pins should be left open.

The Output Enable pin forces the outputs into a high impedance state when a logic 0 is applied.

The output buffers of the H646 can drive two series terminated, 50Ω transmission lines each. This capability allows the H646 to drive up to 16 different point-to-point clock loads. Refer to the Applications section for a more detailed discussion in this area.

The 10H version is compatible with MECL 10H[™] ECL logic levels. The 100H version is compatible with 100K levels.

8/94

PENTIUM MICROPROCESSOR PECL/TTL-TTL CLOCK DRIVER

PIN NAMES

PIN	FUNCTION
OGND	TTL Output Ground (0V)
OVT	TTL Output V _{CC} (+5.0V)
IGND	Internal TTL GND (0V)
IVT	Internal TTL V _{CC} (+5.0V)
VEE	ECL V _{EE} (0V)
VCCE	ECL Ground (5.0V)
ECLK, ECLK	Differential Signal Input
	(PECL)
V _{BB}	VBB Reference Output
Q0–Q7	Signal Outputs (TTL)
EN	Tri-State Enable Input (TTL)

INTERNAL TTL POWER OVT01 Q0A OGND0 INTERNAL TTL GROUND

IVT01

TRUTH TABLE

TCLK	ECLK	ECLK	EN	Q
GND	L	Н	Н	L
GND	Н	L	Н	н
н	GND	GND	Н	н
L	GND	GND	Н	L
Х	Х	Х	L	Z

X = Don't Care; L = Low Voltage Level; H = High Voltage Level; Z = Tristate

DC CHARACTERISTICS (IVT = OVT = VCCE = $5.0V \pm 5\%$)

		0 °	0°C		25°C		°C		
Symbol	Characteristic	Min	Мах	Min	Мах	Min	Max	Unit	Condition
VOH	Output HIGH Voltage	2.6		2.6		2.6	-	V	I _{OH} = 24mA
V _{OL}	Output LOW Voltage	I	0.5	-	0.5	-	0.5	V	I _{OL} = 48mA
IOS	Output Short Circuit Current	Ι	-	I	Ι	-	-	mA	See Note 1

1 The outputs must not be shorted to ground, as this will result in permanent damage to the device. The high drive outputs of this device do not include a limiting IOS resistor.

TTL DC CHARACTERISTICS (VT = VE = $5.0 \text{ V} \pm 5\%$)

		0 °	0°C		°C	85	°C		
Symbol	Characteristic	Min	Мах	Min	Мах	Min	Мах	Unit	Condition
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage	2.0	0.8	2.0	0.8	2.0	0.8	V	
ΙΗ	Input HIGH Current		20 100		20 100		20 100	μA	V _{IN} = 2.7 V V _{IN} = 7.0 V
۱ _{IL}	Input LOW Current		-0.6		-0.6		-0.6	mA	V _{IN} = 0.5 V
VOH	Output HIGH Voltage	2.5 2.0		2.5 2.0		2.5 2.0		V	I _{OH} = -3.0 mA I _{OH} = -24 mA
VOL	Output LOW Voltage		0.5		0.5		0.5	V	I _{OL} = 24 mA
VIK	Input Clamp Voltage		-1.2		-1.2		-1.2	V	I _{IN} = -18 mA
IOS	Output Short Circuit Current	-100	-225	-100	-225	-100	-225	mA	V _{OUT} = 0 V

10H ECL DC CHARACTERISTICS (IVT = OVT = VCCE = $5.0V \pm 5\%$)

		0°C				25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Notes
ΙΗ	Input HIGH Current			225			175			175	μΑ	
۱ _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ	
VIH	Input HIGH Voltage	3.83		4.16	3.87		4.19	3.94		4.28	V	IVT = IVO = VCCE = 5.0V (1)
VIL	Input LOW Voltage	3.05		3.52	3.05		3.52	3.05		3.555	V	IVT = IVO = VCCE = 5.0V (1)
V _{BB}	Output Reference Voltage	3.62		3.73	3.65		3.75	3.69		3.81	V	IVT = IVO = VCCE = 5.0V (1)

100H ECL DC CHARACTERISTICS (IVT = OVT = VCCE = $5.0V \pm 5\%$)

		0°C		25°C				85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Notes
IIН	Input HIGH Current			225			175			175	μΑ	
Ι _{ΙL}	Input LOW Current	0.5			0.5			0.5			μΑ	
VIH	Input HIGH Voltage	3.835		4.12	3.835		4.12	3.835		3.835	V	IVT = IVO = VCCE = 5.0V (1)
VIL	Input LOW Voltage	3.19		3.525	3.19		3.525	3.19		3.525	V	IVT = IVO = VCCE = 5.0V (1)
V _{BB}	Output Reference Voltage	3.62		3.74	3.62		3.74	3.62		3.74	V	IVT = IVO = VCCE = 5.0V (1)

1 ECL VIH, VIL and VBB are referenced to VCCE and will vary 1:1 with the power supply. The levels shown are for IVT = IVO = VCCE = 5.0V

MC10H646 MC100H646

DC CHARACTERISTICS (IVT = OVT = VCCE = $5.0V \pm 5\%$)

		0 °	0°C		25°C			°C		
Symbol	Characteristic	Min	Мах	Min	Тур	Max	Min	Мах	Unit	Condition
ICCL	Power Supply Current		185		166	185		185	mA	Total all OVT, IVT,
ІССН			175		154	175		175	mA	and VCCE pins
ICCZ			210			210		210		

AC CHARACTERISTICS (IVT = OVT = VCCE = $5.0V \pm 5\%$)

				C	25	°C	85	°C		
Symbol	Characte	Min	Max	Min	Max	Min	Max	Unit	Condition	
^t PLH	Propagation Delay	ECLK to Q TCLK to Q	4.8 5.1	5.8 6.4	5.0 5.3	6.0 6.4	5.6 5.7	6.6 7.0	ns	
^t PHL	Propagation Delay	ECLK to Q TCLK to Q	4.4 4.7	5.4 6.0	4.4 4.8	5.4 5.9	4.8 5.2	5.8 6.5	ns	
^t SK(O)	Output Skew	Q0, Q3, Q4, Q7 Q1, Q2, Q5 Q0–Q7		350 350 500		350 350 500		350 350 500	ps	Note 1, 6
^t SK(PR)	Process Skew	ECLK to Q TCLK to Q		1.0 1.3		1.0 1.1		1.0 1.3	ns	Note 2, 6
^t SK(P)	Pulse Skew	$\Delta t_{PLH} - t_{PHL}$		1.0		1.0		1.0	ns	
t _r , t _f	Rise/Fall Time		0.3	1.5	0.3	1.5	0.3	1.5	ns	
tPW	Output Pulse Width	66MHz @ 2.0V 66MHz @ 0.8V 60MHz @ 2.0V 60MHz @ 0.8V	5.5 5.5 6.0 6.0		5.5 5.5 6.0 6.0		5.5 5.5 6.0 6.0		ns	Note 3, 6
^t Stability	Clock Stability			±75		±75		±75	ps	Note 4, 6
FMAX	Maximum Input Frequ	ency		80		80		80	MHz	Note 5, 6

1. Output skew defined for identical output transitions.

2. Process skew is valid for V_{CC} = 5.0V \pm 5%.

3. Parameters guaranteed by $t_{SK(P)}$ and t_r , t_f specification limits.

4. Clock stability is the period variation between two successive rising edges.

5. For series terminated lines. See Applications section for F_{MAX} enhancement techniques.

6. All AC specifications tested driving 50Ω series terminated transmission lines at 80MHz.

Applications Information

Contact a Motorola representative for more information.

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan. ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

