

DESCRIPTION

The M66335 is a facsimile image processing controller to turn into binary signals analog signals which have been output through photoelectric conversion by the image sensor.

The image processing functions includes peak value detection, uniformity correction, resolution change, MTF compensation, γ correction, detection of background/character levels, error diffusion, separation of image zones, and designation of regions.

This controller contains not only the analog processing circuit, the A/ D converter of a 7-bit flash type and image processing memory, but also the image sensor and the interface circuit to the CODEC (Coder and Decoder). Therefore, this LSI alone is capable of image processing.

FEATURES

- High speed scan (max. 2 ms/line, typ. 5 ms/line)
- Compatibility with up to the B4 (8 pixels/mm, 16 pixels/mm) image sensor
- Generation of control signals for the image sensor (CCD, CIS) For CCD: SH, CK1, CK2, RS
- For the contact sensor (CIS): SH, CK1, CK2 • Built-in analog processing circuit (equivalent to the M64291) Sample and hold circuit Gain control circuit Black level clamping circuit Reference internal power supply for the A/D converter

- Built-in A/D converter of a 7-bit flash type
- Built-in image processing memories Uniformity correction memory, Line memory, Error memory, γ correction memory
- External output interface for converted binary data Serial output (→ M66330)
 DMA output
- External output interface for multivalued data DMA transfer of data compensated for uniformity
- Various image processing functions Uniformity correction Resolution change from 50% to 200% (by the 1% step)

MTF compensation (2-dimensional processing, capable of correction for each character/photo)

 γ correction (capable of correction for each character/photo) Detection of background/character levels

Change to pseudo-halftone

- Error diffusion (64 tone steps through 6-bit processing)
- \bullet Organized dither (64 tone steps through the 8 \times 8 matrix)
- Image zone separation (2-dimensional processing)
- 5V single power supply

APPLICATION

Facsimile, word processor and image scanner

Image processing functions	Specifications	Remarks
Reading range	• A4, B4	
Resolution	•8 pixels/mm, 16 pixels/mm (for the horizontal scanning direction)	
Reading speed	•Typ.: 5 ms/line; max.: 2 ms/line	Controlled through the system clock.
Uniformity correction	 White correction, black correction Correction range: 50% 	 Correction memory is built in. Readable from/writable in MPU
γ correction	Logarithmic correction	 γ correction memory is built in. Capable of correction for each character/photo.
MTF compensation	 Laplacian filter circuit through 2-dimensional processing 	 Correction memory is built in. Capable of correction for each character/photo.
Simple conversion to binary	 Floating slice system through the detection circuit for background/character levels 	
Pseudo-halftone	 Error diffusion: 6-bit processing (for 64 tone steps) Organized dither: 8 × 8 matrix (for 64 tone steps) 	 Error buffer memory is built in. 64W × 6 bits dither memory is built in.
Image zone separation	 2-dimensional processing through luminance difference 	
Image reduction	•Range of the reduction rate: 50% to 100% (by the 1% step)	Capable of outputting the average line of a dropped line and the subsequent line instead of both lines
Image enlargement	Range of the enlargement rate: 100% to 200% (by the 1% step)	• Capable of outputting the average line of a repeated line and the subsequent line instead of the repeated line
Image sensor control signal	•CIS image sensor (clock duty: 75%) •CCD image sensor	
Analog processing	• The sample/hold circuit, gain control amplifier, black level clamping circuit, and 7-bit A/D con- verter are built-in.	

Table 1 Image processing functions

M66335FP

FACSIMILE IMAGE DATA PROCESSOR

DESCRIPTION OF DIGITAL PIN FUNCTIONS

Item	Pin name	Input/output	Function
Sensor interface	SH	Output	Outputs the shift pulse signal to transfer electric charges from the sensor's photoconductor component to its transferring component for CCD and the start signal to start the sensor reading circuit for CIS.
	CK1	Output	Outputs the clock pulse signal to sequentially transfer out signaling electric charges from the sensor's transferring component for CCD and the clock pulse signal for the shift register of the sensor reading circuit for CIS.
	CK2	Output	Reversed-phase pulses of CK1
	RS	Output	Outputs the reset pulse to return the voltage at the floating capacitor of the CCD sensor to the initial one.
	PTIM	Output	Outputs the pulse motor control signal for the reading roller.
CODEC interface	SRDY	Input	Transfer start ready signal for data from CODEC
Intenace	STIM	Output	Defines the data transfer section to CODEC.
	SCLK	Output	Clock signal to transfer image data to CODEC
	SVID	Output	Outputs image data in serial to CODEC
DMA interface	DRQ	Output	DMA request signal to the external DMA controller to output in parallel image data through the MPU bus
	DAK	Input	DMA acknowledge signal from the external DMA controller in response to the above DRQ signal
	INT	Output	Single-line termination interrupt
Clock	SYSCK	Input	System clock input pin
	ACCK	Output	Single-line cycle clock
MPU	RESET	Input	Input of the system reset. The cycle counter, register, F/F, and latch are reset.
interface	CS	Input	Chip select signal for MPU to access the M66335
	RD	Input	Control signal for MPU to read data from the M66335
	WR	Input	Control signal for MPU to write data to the M66335
	A0 ~ A4	Input	Address signal to access various registers inside the M66335
	D0 ~ D7	Input/Output	8 bit two way buffer
Others	Vcc	—	Positive power supply pin
	GND	_	GND pin
	TESTI, 0~6	Input	Test input pin. Hold this at "L".
	TESTO	Output	Test output pin. Set this open.

DESCRIPTION OF ANALOG PIN FUNCTIONS (Cont.)

Item	Pin name	Input/output	Function
Power	AVCC	_	Analog power supply pin (rated supply voltage: 5V)
supply	DVCC		Digital power supply pin (rated supply voltage: 5V)
GND	AGND		Analog ground pin
	DGND		Digital ground pin
Sensor signal input part	AIN	Input	Pin to input analog signals output from CCD or CIS (Signals from CCD are input through capacity coupling and those from CIS, with no clamping levels, are input directly.)
Gain	C1, C2	Input	Pin to control the frequency characteristic of the gain control circuit
control circuit	LEVAJ	Input	Pin to control the DC level of output signals of the gain control circuit. The output voltage, VGCAO, is obtained by the following equation: VGCAO = VLEVAJ + GV × VIN, where, VLEVAJ: voltage at LEVAJ VIN: input signal GV: gain of the gain control circuit VIN is the signal element corresponding to the signal level clamped through the input clamping circuit for CCD·CIS3 input or to the GND level for CIS1·CIS2 input.
	GCAO	Output	Signal output pin of the gain control circuit
Black level	BCMI	Input	Signal input pin to the black clamping circuit. Use this with capacity coupling with the GCAO pin.
clamping circuit	BCMV	Input	Pin to set the black level clamping voltage. Sets the black level of signals output from the BCMO pin for CCD signal processing.
	BCMO	Output	Signal output pin of the black level clamping circuit
A/D converter	Vri+	Input	Output of the circuit to generate the A/D full-scale point reference voltage (3.8V). Connected with VWL through the buffer inside the IC. To change the A/D reference voltage range, input a DC voltage from this pin.
	Vri–	Input	Output of the circuit to generate the A/D zero point reference voltage (1.8V). Connected with VBL through the buffer inside the IC. To change the A/D reference voltage range, input a DC voltage from this pin.
	ADIN	Input	Signal input pin to the A/D converting circuit. Use this by connecting with the BCMO pin for CCD or with the GCAO pin for CIS. Input signals in the voltage range (1.8V to 3.8V) set through VWL and VBL.
	VWL	Output	Output of the circuit generating the A/D full-scale reference voltage (3.8V). Connected inside the IC with the A/D converter.
	VBL	Output	Output of the circuit generating the A/D zero point reference voltage (1.8V). Connected inside the IC with the A/D converter.

(1) Operation mode

The M66335 has three basic operations.

- Peak value detection: Adjusting the peak value of analog signals output from the analog circuit to the white reference voltage (VWL) of the A/D converter built in the M66335.
- Generation of data for uniformity correction: Generating data on a white reference original sheet for uniformity correction by the sensor unit and writing them to the memory for correction built in the M66335.
- Read: Reading original sheets, performing image processing of the read image data, and outputting in serial or parallel the indicated converted binary data.

The M66335 is capable of performing the DMA transfer of multivalued data (6-bit data=D7~D2, D1=D0=0) after correction about uniformities.

These three basic operations are performed in the following mode sequences for the CCD sensor and CIS sensor. The sensor is set through the register 00 (SENS).

For the CCD sensor

The peak value of the 16 line cycle is detected by setting the AGC command in the register 00 at "H".

To escape this mode, set the AGC command at "L" after a 20 line cycle (or a cycle of 16 lines or more) passed since the start.

This operation mode is started by setting the UNIF command in the register 00 at "H" after setting UMODE: "H" (white correction) in the register 00 and UNIFM: "L" (only white correction) in the register 01. Starting by the UNIF command also makes the system generate data for nonuniformity correction for white correction (for the 8 line cycle).

To escape this mode, set the UNIF command at "L" after a 10 line cycle (or a cycle of 8 lines or more) passed since the start.

The read operation mode is started by setting the SCAN command in the register 00 at "H". To escape this mode, set the SCAN command at "L".

The peak value of the 16 line cycle is detected by setting the AGC command in the register 00 at "H".

To escape this mode, set the AGC command at "L" after a 20 line cycle (or a cycle of 16 lines or more) passed since the start.

When this operation mode is started by the UNIF command after setting UMODE: "L" (black correction) in the register 00 and UNIFM: "H" (black and white correction) in the register 01, the system also generates black data for non-uniformity correction for black correction (for the 8 line cycle).

To escape this mode, set the UNIF command at "L" after a 10 line cycle (or a cycle of 8 lines or more) passed since the start. In the case of only white correction, the setting is not necessary. Follow the instruction below.

When this operation mode is started by the UNIF command in the register 00 after setting UMODE: "H" (white correction) in the register 00 and UNIFM: "L" (only white correction) in the register 01, the system also generates white data for nonuniformity correction for white correction (for the 8 line cycle).

To escape this mode, set the UNIF command at "L" after a 10 line cycle (or a cycle of 8 lines or more) passed since the start.

The reading operation is started by setting the SCAN command in the register 00 at "H". To escape this mode, set the SCAN mode at "L".

The signal operations and data flow in each basic operation are shown in the page 4-217 and 4-218, and the flowchart is in the page 4-260 and 4-261.

OPERATIONS OF SIGNALS IN THE PEAK VALUE DETECTION OPERATION

FLOW OF DATA IN THE CREATION OF DATA FOR UNIFORMITY CORRECTION

MITSUBISHI (DIGITAL ASSP)

FACSIMILE IMAGE DATA PROCESSOR

FLOW OF DATA IN THE READING OPERATION (FOR OUTPUT IN SERIAL: BINARY DATA)

FLOW OF DATA IN THE READING OPERATION (FOR OUTPUT IN PARALLEL: BINARY DATA)

FLOW OF SIGNALS IN THE READING OPERATION (FOR MULTIVATED DATA)

(2) Line cycle and reading sequence

The relationship between the line cycle and the reading sequence of the M66335 is shown in Fig. 1.

The relationship between the CODEC interface operations and the reading sequence is shown in Fig. 2 and that between the DMA interface operations and the reading sequence is shown in Fig. 3.

• Single-line cycle (1/ACCK):

Defines the processing time per line of the M66335.

The single-line cycle is decided by the line cycle counter value registers 03 and 04 (PRE_DATA), and the pixel transfer clock. The pixel transfer clock is 1/16 of SYSCK.

- 1 line cycle (1/ACCK) [NS]
- = line cycle counter value × pixel transfer clock cycle [NS]
- = (PRE_DATA + 1) × pixel transfer clock cycle [NS]
- = (PRE_DATA + 1) × 16/SYSCK [NS]

After loading the PRE_DATA value, the line cycle counter generates the addresses of the following gate signals while counting down with the pixel transfer clock.

Sensor start pulse (SH):

Image sensor start pulse. The point of the start pulse is decided by the uniformity correction range (UNIFG) and the value of the register 05.

[ST_PL]

The ST_PL value must be set according to the following formulas for each image sensor type.

CCD: ST_PL = dummy pixels of the sensor + 2 CIS: ST_PL = 2 • Uniformity correction range (UNIFG):

Defines the range where uniformity correction is performed. This range corresponds to the width of the sensor (B4 to A4). For the relationship between the sensor width and the uniformity correction range, see Table 2.

• AGC range (AGCG):

Defines the range where peak value detection is performed. This range corresponds to the sensor width (B4 to A4).

Auto gain control is performed for the whole width of the sensor (solid line) in the AGC mode and for the narrower width (dashed line) than the sensor width in the SCAN mode.

For the relationship between the sensor width and the AGC range, see Table 2.

• Original sheet reading width:

Defines the reading width for original sheets.

For original sheet widths narrower than the sensor width, the reading range (dashed line) is set, using the sensor center as the base center point. Therefore, the points for the original sheet should be based on the sensor center.

For the relationship between the sensor width and the original sheet reading width, see Table 3.

 Pulse motor control signal (PTIM): Generates control signals for the pulse motor for the reading roller.

Fig. 1 Line cycle and the reading sequence

MITSUBISHI (DIGITAL ASSP)

FACSIMILE IMAGE DATA PROCESSOR

Fig. 3 DMA interface operations and the reading sequence (Multivated data output)

Solution Sol	ensor width	Resolution	B4	A4
Uniformity of		200dpi	2103/55	1943/215
range (U	INIFG)	400dpi	4207/111	3887/431
	AGC	200dpi	2103/55	1943/215
AGC range	mode	400dpi	4207/111	3887/431
(AGCG)	SCAN	200dpi	2018/130	1584/564
	mode	400dpi	4037/261	3169/1129

Table 2 Gate signal ranges for the sensor widths

 Table 3
 Original sheet reading widths according to the original sheet widths for the sensor widths

Sensor width Original sheet width	Resolution	B4	A4
B4	200dpi	2102/54	
D4	400dpi	4206/110	
A4	200dpi	2102/54	1942/214
	400dpi	4206/110	3886/430

When original sheets narrower than the sensor width, cut out the original sheet width with the registers 11 to 14. (OFFSET, OUTLENGTH): (Region designation function)

(3) Image processing function

The M66335 converts image signals input from the image sensor into binary data. This includes the simple conversion of characters and the change of images with various densities into pseudo-halftone.

Before the conversion, distortions and characteristic degradations which signals from the image sensor almost always have must be corrected or compensated.

Image zone separation must also be performed to realize optimal conversion-to-binary of the image for the possible shortest transmission time.

Functions required for image processing are as follows.

- Peak value detection
- Uniformity correction
- Resolution change (enlargement, reduction and averaging)
- MTF compensation
- γ correction
- Background/character level detection (simple conversion to binary)
- Change to pseudo-halftone
 Organized dither
 Error diffusion
- Image zone separation
- Designation of regions

` Peak value detection

Because the A/D converter of the M66335 uses the input dynamic range at 2 Vp-p, the reference voltages (VwL, VBL) corresponding to the peak value are fixed. The peak value of analog signals output from the analog processing circuit must be detected before those signals are input to the A/D converter in order to adjust the analog signal peak value to the full-scale value of the converter.

The peak value detection is performed by reading white data from the sensor in the AGC mode selected from its three modes (AGC, UNIF and SCAN) of the M66335.

As shown in Fig. 4, preprocessing of peak value detection to increase the gain at the gain control is performed for a 8 line cycle and gain control processing to decrease the gain when the A/D converter overflows is performed for another 8 line cycle after the start command (register 00: AGC) in the AGC mode.

As a result, the gain changes as shown in Fig. 5.

Fig. 4 Peak value detection

Fig. 5 Changes of the gain in peak value detection

Uniformity correction

Uniformity correction is to correct shading distortion due to less light at each end of the light source and faded light around the lens, or high frequency distortion due to characteristic variations pixel by pixel in the image sensor.

As shown in Fig. 7, the M66335 makes blocks each of two pixels, creates a set of uniformity correction data for each block, and write them to the built-in correction memory (SRAM: 1024 word $\times\,6$ bits) in the UNIF mode selected from its three modes (AGC, UNIF and SCAN).

The correction data created each for two pixels are read from the built-in correction memory to correct the input image data consecutively in the SCAN mode. With the register 01 (UNIFS) set at "1", the uniformity is not implemented.

With the register 02 (RES) set at "1", uniformity correction is performed on a block for 4 pixels.

For uniformity correction, white correction or the combination of black correction and white correction can be selected according to the types of image sensors as shown in Table 4.

This is set in the register 00 (SENS, UMODE) and register 01 (UNIFM). To perform both black correction and white correction, the black correction must be done first.

The M66335 implements the correction in the correction range of 50% as shown in Fig. 7. If a set of white correction data is beyond the correction range of 50%, the correction are not exactly performed as shown in Fig. 7. Therefore, ensure that input signals are within the range.

Fig. 6 Waveform of white data output from the image sensor

Table 4 Uniformity correction due to the image sensor

	0	Register								
Image sensor	Correc- tion	Type of the sensor Register 00 (SENS)	Creation of uniformity correction data Register 00 (UMODE)	Selection of correction mode Register 01 (UNIFM)						
CCD	White correction	0	1	0						
	White correction	1	1	0						
CIS	Black correction White correction	1	Period of black correction : 0 Period of white correction : 1	1						

Fig. 7 Uniformity correction

Resolution change

Resolution change is controlled through H/W in the horizontal scanning direction and through S/W in the vertical scanning direction. The sequence for resolution change is shown in Fig. 8.

* Horizontal scanning direction

The scaling factor is written from the register 15 (CNV_D) to the built-in resolution change memory (100W \times 1 bit) bit by 100 operations.

MSSEL of the register 6 must be set at "0" (which specifies the horizontal scanning direction) before the scaling factor is written in the memory.

The procedure to specify CNV_D is as follows.

In the case of reduction

Data written in the resolution change memory have the following meaning.

"0": 1 pixel is output.

"1": No pixel is output.

(Example of reduction to 75%)

75 0's and 25 1's are written in the memory. The intervals of 1's should be as equal as possible to obtain the image with better quality.

In the case of enlargement

Data written in the resolution change memory have the following meaning.

"0": 1 pixel is output.

"1": 2 pixels are output.

(Example of enlargement to 150%)

50 0's and 50 1's are written in the memory. The intervals of 1's should be as equal as possible to obtain the image with better quality as in the reduction.

Vertical scanning direction

Processing of lines to implement the scaling factor in the vertical scanning direction is decided for each line through the register. MSSEL of the register 6 must be set at "1" (which specifies the vertical scanning direction), and either "0" or "1" written in the register 15

(CNV_D) before the processing of each line.

The timing for this setting is in the period between the first transition of the INT signal (synchronized with that of ACCK) and that of the SH signal (the start of taking the SRDY signal in).

The procedure to specify CNV_D is as follows.

In the case of reduction

CNV_D indicates the current line read. "0": 1 line of data are output. "1": No line of data are output.

In the case of enlargement

CNV_D indicates the next line read.

"0": 1 line of data are output with PTIM generated (paper driven). "1": 1 line of data are output with PTIM generated (paper not driven). (Paper not driven: the same line is read again.)

Fig. 8 Sequence of resolution change setting

Use the PTIMB signal as control signals for the pulse motor for the

for enlargement in Fig. 10.

 Image: State in the initial setting, the enlargement/reduction setting (CNV_D) in horizontal scanning is implemented. Then, after the system is switched into the setting mode for enlargement/reduction in vertical scanning, the first line is set.

 With a ↓ flow of ACK, the SCAN command is taken in, when the system comes into the standby mode for SRDYB. (START: 'H')

 With a ↓ flow of SCH, SRDYB: 'L' is taken in, when the system comes into the standby mode for sRDYB. (START: 'H')

 With a ↓ flow of SK, SRDYB: 'L' is taken in, when the reading of the single line is completed. (SSCAN: 'H')

 During the period that STIMB is at 'L', converted binary data are output.

 With a ↓ flow of SSCAN, INT is asserted. (INT: 'H')

 With a ↓ flow of SSCAN, INT is asserted. (INT: 'H')

 With a ↓ flow of SSCAN, INT is set as the enlargement/reduction setting (CNV_D) in vertical scanning is implemented; INTCLR is generated; INT is negated; and then SRDYB is set at 'L'.

0

SCLK SVID PTIMB <CNV_D>

<INTCLR>

1

2345

Fig. 10 Enlargement processing sequence

1

7

0

0

1

`MTF compensation

As shown in Fig. 11, image data of characters or pictures photoelectrically converted by the sensor unit show degradation in resolution. MTF compensation function of the M66335 restores the resolution of those data and expands the apparent dynamic range by strengthening the high-pass frequency constituent with the Laplacian filter.

Fig. 11 MTF compensation

M66335FP

FACSIMILE IMAGE DATA PROCESSOR

γ correction

 γ correction according to the sensitivity characteristics (logarithmic characteristics) of human eyes is implemented to approximate the image data to natural images.

To do this, the M66335 writes the γ correction table to the built-in SRAM and read the corrected values corresponding to read image data values from the SRAM.

 γ = 0.45 is considered to be the optimal for γ correction for thermal head printers. Fig. 12 shows a characteristics example at γ = 0.45. γ correction processing is set through the register 06 : GAMMA as follows.

Fig. 12 γ correction by means of the conversion table

GAMMA : 01 γ = conversion table value

- $\begin{array}{ll} \mbox{GAMMA: 10} & \gamma \mbox{= 1 for image zone separation (character)} \\ & \gamma \mbox{= conversion table value for image zone} \end{array}$

 γ = 1 for image zone separation (photo)

For the procedures of inputting/outputting of data, refer to the section on writing to/reading from the $\gamma\,$ correction memory.

* Background/character level detection

The M66335 uses not the fixed threshold system but the floating threshold system, where the optimal threshold for simple conversion-to-binary of objective pixels are continually generated by constantly detecting background/character levels.

Accordingly, the threshold value proper for image data is generated without processing the data.

The threshold value is used for the areas to be converted to binary when simple conversion-to-binary or image zone separation is selected as the mode of conversion to binary in reading data.

: register 07 (MODE)

Background level counter

When image data greater (lighter in light) than the current value are input, this counter counts up to approximate to the data.

When image data smaller (darker in light) than the current value are input, this counter counts down to approximate to the data.

Setting of the rate of count-up/count-down following data input : register 0C (MAX_UP, MAX_DOWN)

Setting of the lowest limit for background levels

: register 0E (LL_MAX)

Character level counter

When image data greater (lighter in light) than the current value are input, this counter counts up to approximate to the data. When image data smaller (darker in light) than the current value are

input, this counter counts down to approximate to the data. Setting of the rate of count-down following data input

: register 0C (MIN_UP)

Setting of the highest limit for character levels : register 0D (UL_MIN)

Fig. 13 Background/character levels

`Error diffusion

The error diffusion, which is a conditional determination method, locally diffuses density errors between the original image and the result to obtain the best approximation. This generates images with good compatibility of gradation and resolution.

This is operated by selecting the error diffusion in conversion-intobinary mode selection.

: register 07 (MODE)

In error diffusion, dithers as well as density errors are added to image data. The dithers are data as commonly used for the dither matrix.

: register 08 (ERROR)

 γ correction must be performed in the error diffusion.

Organized dither

The M66335 has built-in SRAM with a configuration of 64 words \times 6 bits for organized dither memory.

In the initial setting, write the threshold value proper for the preferred dither pattern to the dither memory after setting the dither matrix size.

- : register 07 (DITH)
- : register 10 (DITH_D)

An example of dither patterns is shown in Fig. xx.

For the procedure of inputting/outputting data, refer to the section on writing to/reading from the dither memory.

Fig. 14 Error diffusion method

M66335FP

FACSIMILE IMAGE DATA PROCESSOR

` Image zone separation

To make data conversion fit for each image zone, a black and white image is separated into the zones to be converted to binary and the gradation zones. The binary zone is processed through simple conversion to binary and the gradation zone through the error diffusion. : register 08 to 0E

Fig. 15 Image zone separation

` Region designation function

The sensor width is fixed for A4 and B4.

The region designation function is to output only the data for a region defined and designated in terms of output data after resolution change (or after uniformity correction for multivalued data). Registers 11 to 14 (OFFSET, OUTLENGTH)

Fig. 16 Cut-out function

MITSUBISHI (DIGITAL ASSP)

FACSIMILE IMAGE DATA PROCESSOR

(4) CODEC interface (Binary data output)

Unit : 1/SYSCK Note: A is decided through the registers 05 (ST_PL) 11 and 12 (OFFSET), and B through the registers 13 and 14 (OUTLENGTH).

Note: The 3-line handshake of SRDY, SH and STIM, which is the interface with CODEC, is the same as serial output.

(5) DMA interface (multivalued output)

The DMA transfer of data after non-uniformity correction can be performed by setting P_0 of the register 01: at "1" (existence of DMA

output) and M_B of that register at "1" (multivalue). With this setting, neither enlargement, nor reduction, nor 400 dpi of resolution can be set.

1 On completion of reading one line, with a \downarrow flow of SSCAN, the reset signal is entered in the DMA counter.

2 With a \uparrow flow of the reset signal, DRQ shifts to 'H', when the DMA transfer becomes ready.

3 With DAKB at 'L' and a \downarrow flow of RDB, DRQ shifts to 'L', when multivalued data are output to D <7 : 2> during the period that RDB is at 'L'. 4 With a \uparrow flow of DAKB, the DMA counter counts up and DRQ shifts to 'H', when the DMA transfer becomes ready again.

5 The cycle of the above 3 and 4 is repeated until the DMA counter counts up to reach the number of output pixels set in the registers 13 and 14 OUTLENGTH subtracted by one. By that repetitive operation, DMAFIN shifts to 'H' to terminate the DMA transfer when it reaches the set number.

 $6\;$ With a \downarrow flow of DMAFIN, INT shifts to 'H', when CPU has an interrupt.

7 Reading is resumed from the next line by negating the INT signal through the register 17 (INTCLR).

(6) Writing to/reading from the dither memory, γ correction memory, uniformity correction memory, and resolution change memory

The sequences of writing a dither pattern to and reading it from SRAM with a configuration of 64 words \times 6 bits which is built in the M66335

Writing to the dither memory (MPU \rightarrow M66335)

for organized dither are shown below.

1 D6 and D5 (DITH) of the register 07 are set to define the dither matrix size.

2 D0 (CNTRST) of the register 01 is set at "1" to reset the address counter of the dither memory.

3 DITH_D is selected in the register 10, and DATA (0) of the MPU bus (D5 to D0) is written in the memory. The address counter of the dither memory is incremented at the edge of the first transition of \overline{WR} . (For writing)

4 DITH_D is selected in the register 10, and DATA (0) of the dither memory is read into the MPU bus (D5 to D0). The address counter of the dither memory is incremented at the edge of the first transition of \overline{RD} . (For reading)

A0 A1 A2 A3 A4 A5 A6

Dither	matri	x addr	esses

	A4 A5	A6	A7	7	A8	A9	A10	A11	A
A1 A2 A3	A8 A9	A10	A11	1	A16	A17	A18	A19	A
A5 A6 A7	A12 A13	A14	A15	15	A24	A25	A26	A27	A2
5 A6 A7	A16 A17	A18	A19	19	A32	A33	A34	A35	A3
9 A10 A11	A20 A21	A22	A23	23	A40	A41	A42	A43	A4
	A24 A25	A26	A27	27	A48	A49	A50	A51	A52
A13 A14 A15	A28 A29	A30	A31	31	A56	A57	A58	A59	A6
4×4 matrix	4 × 8	matrix					8	3 × 8	mat

A0 A1 A2 A3

A7 A15 A23 A31 A39 A47 A55 A63

M66335FP

The sequences of writing γ correction table to and reading it from SRAM with a configuration of 64 words \times 6 bits which is built in the M66335 for γ correction are shown below.

Writing to the γ correction memory (MPU \rightarrow M66335)

Reading from the γ correction memory (M66335 \rightarrow MPU)

- 1 D0 (CNTRST) of the register 01 is set at "1" to reset the address counter of the γ correction memory.
- 2 GAMMA_D is selected in the register 0F, and DATA (0) of the MPU bus (D5 to D0) is written in the memory. The address counter of the γ correction memory is incremented at the edge of the first transition of WRB. (For writing)
- 3 GAMMA_D is selected in the register 0F, and DATA (0) of the γ correction memory is read into the MPU bus (D5 to D0). The address counter of the γ correction memory is incremented at the edge of the first transition of RDB. (For reading)

Uniformity correction data can be written to and read from SRAM for uniformity correction built in the M66335 through the MPU bus. With this operation, the uniformity data can be temporarily saved in the backup memory when the power is off. The sequences of writing and reading uniformity correction data are shown below.

Writing to the uniformity correction memory (MPU \rightarrow M66335)

Reading from the uniformity correction memory (M66335 \rightarrow MPU)

- 1 "0" (black correction) or "1" (white correction) is set in D1 (Umode) of the register 00.
- 2 D0 (CNTRST) of the register 01 is set at "1" to reset the address counter of the uniformity correction memory.
- 3 UNIF_D is selected in the register 19, and DATA (0) of the MPU bus (D5 to D0) is written in the memory. The address counter of the uniformity correction memory is incremented at the edge of the first transition of WRB. (For writing)
- 4 UNIF_D is selected in the register 19, and DATA (0) of the uniformity correction memory is read into the MPU bus (D5 to D0). The address counter of the uniformity correction memory is incremented at the edge of the first transition of RDB. (For reading)

M66335FP

The sequences of writing a resolution change table to and reading it from SRAM with a configuration of 100 words \times 1 bit which is built in the M66335 for resolution change are shown below.

Writing to the resolution change memory (MPU \rightarrow M66335)

Reading from the resolution change memory (M66335 \rightarrow MPU)

1 "0" (horizontal scan) is set in D7 (MSSEL) of the register 06.

2 D0 (CNTRST) of the register 01 is set at "1" to reset the address counter of the resolution change memory.

3 CNV_D is selected in the register 15, and DATA (0) of the MPU bus (D0) is written in the memory. The address counter of the resolution change memory is incremented at the edge of the first transition of WRB. (For writing)

4 CNV_D is selected in the register 15, and DATA (0) of the resolution change memory is read into the MPU bus (D0). The address counter of the resolution change memory is incremented at the edge of the first transition of RDB. (For reading)

M66335FP

FACSIMILE IMAGE DATA PROCESSOR

LIST OF I	the M66335FP reg	gisters										
R/W	A4 ~ A0	Default	D7	D6	D5	D4	D3	D2	D1	D0		
R/W	00H	00H	RESET	SENS	SENS_W	AGC	UNIF	SCAN	UMODE	"L"		
R/W	01H	00H	SOURCE	S/H_W	SH_W	UNIFS	P_0	M_B	UNIFM	CNTRST		
W	02H	00H	RES	LCMPS	BLS	BLCMPS	CCD	CIS3	CIS2	CIS1		
W	03H	00H		PRE_DATA (7 : 0)								
W	04H	00H					PRE_DA	TA (13 : 8)				
W	05H	00H				ST_PL	(7:0)					
W	06H	00H	MSSEL	AVE	CONVX <1 : 0> CONVY <1 : 0> GAMMA					\ <1 : 0>		
W	07H	00H	POL	DITH ·	<1 : 0>	MODE	<1 : 0>	ę	SLICE <2 : 0:	>		
W	08H	00H			ERROR	l <1 : 0>	MTF_C	<1:0>	MTF_I	<1 : 0>		
W	09H	00H					SEPA_A	A (5 : 0)				
W	0AH	00H					SEPA_I	B (5 : 0)				
W	0BH	00H					SEPA_0	C (5 : 0)				
W	0CH	00H			MAX_U	P <1 : 0>	MAX_DOV	VN <1 : 0>	MIN_UF	° <1 : 0>		
W	0DH	1FH					UL_MIN	l <5 : 0>				
W	0EH	20H					LL_MAX	(<5 : 0>				
R/W	0FH	_					GAMMA	_D (5 : 0)				
R/W	10H	_					DITH_[D (5 : 0)				
W	11H	00H				OFFSE1	<7:0>					
W	12H	00H					O	FSET <12 :	8>			
W	13H	00H				OUTLENG	TH <7 : 0>					
W	14H	00H					OUT	LENGTH <12	2 : 8>			
W	15H	_								CNV_D		
R/W	16H	00H						AGCSTP	SRDYS	SRDYB		
W	17H	_				INT	CLR					
R/W	18H	00H				GAIN -	<7:0>					
R/W	19H	00H					UNIF_C	<5 : 0>				

List of the M66335FP registers

Address	R/W					De	scription						
00н	R/W	D7	D6	D5	D4	D3	D2	D1	D0				
		RESET	SENS	SENS_W	AGC	UNIF	SCAN	UMODE	"L"	(Default value: 00н)			
		D7	RI	ESET : syste				D7 = 1, the s rite pulse is		reset during the period that			
		0		Normal m									
		1		Reset mo	ode		(*	<) Write only					
		D6	5	SENS : sens	or type								
		0		CCD									
		1	CIS	6: (75% of cl	lock duty)								
		L											
		D5	SENS W	: reading wi	dth of the c	ensor							
		0	3LIN3_W	A4									
		1		B4									
				D4									
							_						
	D4		AGC : AGC	mode		 Contr 	ols start/sto	o of the AC	GC mode.				
		0		Stop									
		1	1 Start										
		D3		UNIF : UNIF	mode		 Contr 	rols start/sto	o of the UI	NIF mode.			
		0		Stop									
		1		Start									
		D2	S	CAN : SCA	N mode		Controls start/stop of the SCAN mode.						
		0		Stop									
		1		Start									
		· · · · ·											
			UMODE : u	niformity corr	ection in the	UNIF mode							
				white correction									
		0	Black cor			_							
		1	White co		White	correction	_						
01н	R/W												
		D7	D6	D5	D4	D3	D2	D1	D0	1			
		SOURCE	S/H_W	SH_W	UNIFS	P_O	M_B	UNIFM	CNTRST	(Default value : 00н)			
			I							1			
		D7	SOURCE	reading wid	th of the c	riginal	D6	2/1	H W · SM	/ pulse width			
		0	SOURCE .	A4		iginal	0			e system clock cycle)			
		1		B4			1			iplied by 0.5			
				D4				INC					

Address	R/W						D	escription				
01н	R/W	D5		SH	_W : SH	pulse width						
		0	Norm			system clock	cycle)					
		1	R	everse	of norm	al multiplied b	y 2					
		D4			S : unifor	mity correction						
		0			Va							
		1			Inv	alid						
		D3				IA output		 D0 is of MS 		e form of L	SB and D7 in the form	
		0				MA output			5.			
					vvitn Divi	A output						
		D2		M_	B : proce	ssing mode					d, data (6 bit) after non-	
		0			Bin			unifori transfe		tion can be	e output through the DM	
					Multi	value						
		D1	UN	llF : uni	iformity c	orrection in S	CAN					
		0			White co	prrection						
			BI	ack co	rrection +	- white correc	tion					
		D0	C		T : addre	ess counter re	set	● With Γ	00 = 1, the	counter is	reset during the period	
		0							the write pulse is "L".			
		1			Reset	mode			built-in RA (*) Write o		ses are reset.	
02н	W	D7	İ	D6	D5	D4	D3	D2	D1	D0	7	
		RES	S LC	CMPS	BLS	BLCMPS	CCD	CIS3	CIS2	CIS1	(Default value : 00н)	
					:	• •		·			-	
		D7			RES : re			D6	LCMPS : line clamping			
		0			200 400	-		0			alid Ilid	
					400	upi		1		Va	liiu	
		D5		E	BLS : bit	clamping						
		0			Inv	alid						
		1			Va	lid						
		D4	BL	CMPS	: black l	evel line clam	ping					
		0			Inv	alid						
		1			Va	lid						
		D3	D2	D1	D0	Sensors co	mnatible	with image	sensor into	rfaces		
		0	0	0	1	CIS1 : sens	-					
		0	0	1	0	CIS2 : sens		-		-		
		0	1	0	0	CIS3 : sens						
		1	0	0	0			CCD				

Address	R/W	Description
03н	W	D7 D6 D5 D4 D3 D2 D1 D0
		РРЕ_DATA <7 : 0> (Default value : 00н)
		D7 to D0 : PRE_DATA <7 : 0> the lowest order 8 bits of the single-line cycle counter value
2.4		
04н	W	D7 D5 D3 D1 D0
		PRE_DATA <13 : 8> (Default value : 00H)
		D5 to D0 : PRE_DATA <13 : 8> the highest order 6 bits of the single-line cycle counter value
05н	W	
		D7 D6 D5 D4 D3 D2 D1 D0
		ST_PL <7 : 0> (Default value : 00H)
		DZ to D0 + CT_D1 + Z + 0, start pulse position to the senser
		D7 to D0 : ST_PL <7 : 0> start pulse position to the sensor • Set ST_PL = (dummy pixels of the sensor + 2).
06н	W	D7 D6 D5 D4 D3 D2 D1 D0
		MSSEL AVE CONVX CONVY GAMMA (Default value : 00H)
		D7 MSSEL : horizontal and vertical setting
		0 Horizontal
		1 Vertical
		D6 AVE : averaging processing • When "with averaging" selected :
		0 With averaging For enlargement : inserted lines are the average of the preceding one and the current one; and
		1 Without averaging For reduction : the subsequent lines from removed lines are the average of the removed one and the current one.
		D5 D4 CONVX : enlargement/reduction mode in the horizontal scanning direction • RES = 1
		0 0 Original scale With the setting of 400dpi, enlargement cannot be set.
		0 1 Enlargement
		1 0 Reduction
		D3 D2 CONVY : enlargement/reduction mode in the horizontal scanning direction
		0 0 Original scale
		0 1 Enlargement 1 0 Reduction
		1 1

Address	R/W		Description						
06н	W			0.1.1.1	•				
		D1 D0			A : γ correction p				
		0 0		aracter, pho	$\gamma = 1$ oto : $\gamma = downloa$				
		1 0			= 1; photo : γ = downloa				
					= download value				
						, prioto : 7 – 1			
		Note: Judg	ment betv	veen charao	cter and photo is	based on the	result of ima	ge zone s	separation.
07н	W	D7	D6	D5	D4 D	3 D2	D1	D0	-
		POL	D	щ́н	MODE		SLICE		(Default value : 00н)
					inary output mod	e			
		0		White : 1; b					
		1		White : 0; b	IACK : 1				
		D6 D5		DIT	TH : dither matrix	size			
		0 0			4 × 4				
		0 1			4×8				
		1 0			8×8				
					_				
		D4 D3	B MOD	E : selection	n of the conversi	on-to-binary m	ode		
		0 0		le binary					
		0 1		nized dithe					
		1 0	-		ration (simple bina	ry + error diffusi	on)		
		1 1	Error	diffusion					
		D2 D	1 D0	SLICE : thre	eshold factor for cor	version to binary	/		
		0 0	0		6/16				
		0 0			7/16		1		
		0 1			8/16		4		
		0 1			9/16		4		
		1 0			10/16		4		
		1 C			11/16 12/16		-		
					12/16		-		
					13/10		_		

Address	R/W		Description						
08н	W	D7	D6 D5	D4	D3	D2	D1	D0	
				ROR		=_C	MT		(Default value : 00н)
									(
							_		
		D5 D4		ERRC					
			Error (base)			dition to erro	rs		
		0 0	Strong (7/8)		Weak (_		
		0 1 1 0	Strong (7/8) Weak (3/4)		Strong Weak (_		
		1 1	Weak (3/4)		Strong		_		
			1100at (0/ 1)		etterig				
							-		
		D3 D2 0 0	MIF_C	: MTF comp 1/4	pensation ta	actor	_		
		0 1		1/4			_		
		1 0		1			_		
		1 1		0			-		
		Note: This is v	valid when MODE	is simple b	inary or ima	age zone se	paration (d	haracter).	
					-	-	· `	,	
		D1 D0	MTF_I	: MTF comp	ensation fa	ictor	_		
		0 0		1/4			_		
		0 1 1 0		1/2			_		
		1 1		0			_		
			/alid when MODE		d dithor or	or diffusion			ration (nhota)
		Note: This is v	alid when MODE	is organize	a alther, en	or allusion	or image 2	one sepa	ration (photo).
09н	W								
		D7	D6 D5	D4	D3	D2	D1	D0	I
				1	SEP	A_A	' 		(Default value : 00н)
				-		L L	I		
		D5 to D0 : SE	PA_A Image zor	ne separatio	on paramete	er (differentia	al)		
0.4.1	W								
0Ан	vv	D7	D6 D5	D4	D3	D2	D1	D0	
			_		SEF				(Default value : 00н)
									(
		D5 to D0 : SE	PA_B Image zo	ne separatio	on paramet	er (minimum)		
		201020102	<u>-</u> 2		, paramet		·)		
0Вн	W	_		_	_	-	_	-	
			D6 D5	D4	D3	D2	D1	D0	l
					SEF	A_C			(Default value : 00н)
		D5 to D0 : SE	PA_C Image zo	ne separatio	on paramete	er (maximun	ר)		

Address	R/W					D	escription						
0Сн	W	D7	D6	D5	D4	D3	D2	D1	D0				
				MAX	_UP	MAX_	DOWN	MIN	_UP	(Default value : 00н)			
					<u> </u>								
		D5											
		0	D4 MAX_U 0										
		0	1	Ordinary (T = (single pixel cycle) \times 32) Slow (T = (single pixel cycle) \times 64)									
		1	0	Fast (Γ = (single	pixel cycle) × 16)						
		1	1	Fastest (Γ = (single	pixel cycle) × 8)						
		D3	D2 MAX_DO	OWN : backgro	und level dete	ction Clock fo	r the down cour	nter					
		0	0	Ordinary (Γ = (single	pixel cycle) × 128)						
		0	1		Γ = (single								
			0		Γ = (single								
			1	Fastest (Γ = (single	pixel cycle) × 32)						
				ID , abaraatar	loval dataati	on Clock for							
			D1 D0 MIN_UP : character level detection Clock for the up counter 0 0 Ordinary (T = (single pixel cycle) × 128)										
		0	1		$\Gamma = (single$ $\Gamma = (single$								
		1	0		Γ = (single								
		1	1	Fastest (1	Γ = (single	pixel cycle) × 32)						
0DH	W	D7		Dr	D 4	D 2	D 2		D 0				
•=••		D7	D6	D5	D4	D3	D2	D1	D0				
							MIN			(Default value : 1FH)			
		D5 to D0	: UL_MIN	Detection o Highest lim			ter levels						
0Ен	W	D7	D6	D5	D4	D3	D2	D1	D0				
						LL_	 MAX			(Default value : 20н)			
				Detection of	fhaakara								
				Lowest limi	S								
		Lowest lin	mit of backg	round levels	s (LL_MAX	i) > highes	limit of cha	aracter leve	ls (UL_MI	N)			
0FH	R/W	D7	D6	D5	D4	D3	D2	D1	D0	_			
						GAMMA	 _D <5 : 0>						
							1						
		D5 to D0	: GAMMA_I	ວ Built-in γ	r memory o	lata							
10н	R/W	D7	D6	D5	D4	D3	D2	D1	D0	_			
						DITH_[) 0 <5 : 0>						
		L]						J			
		D5 to D0	: DITH_D	Built-in dith	er memory	data							

Address	R/W					De	escription			
11н	W									
		D7	D6	D5	D4	D3	D2	D1	D0	1
			1	1	OFFSE	<7:0>		1	1	(Default value : 00н)
										1
		D7 to D0 :	OFFSET <	:7 : 0> Offs	set for cut-o	ut Lowest	order 8 bi	its		
12н	W									
		D7	D6	D5	D4	D3	D2	D1	D0	
						OFI	-SET <12	: 8>		(Default value : 00н)
										1
		D3 to D0 :	OFFSET <	12 : 8> Of	fset for cut-	out Highe	st order 5	bits		
13н	W									
_		D7	D6	D5	D4	D3	D2	D1	D0	
			1		OUTLENG			1	l	(Default value : 00н)
		D7 to D0 :	OUTLENG	TH <7 : 0:	> No. of out	put pixels	Lowest or	rder 8 bits		
1.4.1	W									
14н	vv	D7	D6	D5	D4	D3	D2	D1	D0	
				0.5			ENGTH <	1		(Default value : 00н)
				TU 40.0		ما من المراجع الم	l link a at	andan C hit	_	
		Note: OUT	FLENGTH <	<12 : 8> m	8> No. of o ust be a mເ	Itiple of 8.	lf a numbe	er of output		
		nota	a multiple o	f 8, the rer	mainder of t	he division	must be o	omitted.		
15H	R/W	_	_	_	_	_	_	-	-	
		D7	D6	D5	D4	D3	D2	D1	D0]
									CNV_D	
			D Indiaati	on of onlo	raomont/ro	duction				
		DU: CNV_	indicati ם_	on or enla	rgement/red	JUCTION				
		1								

Address	R/W					D	escription			
16н	R/W	D7	D6	D5	D4	D3	D2	D1	D0	
		D7		05		03				
							AGCSTP	SRDYS	SRDYB	(Default value : 00н)
		D2	AGCS	TP : gain c	ontrol coun	ter				
		0	Gain	o control co	ounter valid.					
		1		Gain fix	ked.					
		D1	SR	DYS : SRI	DY control					
		0	SRDY cor	ntrol throug	h the regist	er				
		1	SRDY cor	ntrol throug	h the exteri	nal pin				
		D0	SRDYB	: data tran	sfer start re	ady.	 In the 	case of dat	a control th	nrough the register, the
		0		Transfer a	llowed.		SDRY	B input pin	must be a	lways set at "H".
		1	Ti	ransfer not	allowed.			e control th		register, the SRDY register ^{ne.} (*) Write only
17н	W									
		D7	D6	D5	D4	D3	D2	D1	D0	
						 CLR				
		INT sign	als are nega	ted by acce	essing to th	is address				
18H	R/W		D o	55	D.	Da	50	D.	Ba	
		D7	D6	D5	D4	D3	D2	D1	D0]
					GAIN	<7 : 0>	1			
			ng : the curre g : the gain v							
					id only if AG					
19H	R/W									
		D7	D6	D5	D4	D3	D2	D1	D0	• With UMODE = 0, access to
						UNIF	 <5 : 0>			the uniformity correction memory for black correction
										is available.
										• With UMODE = 1, access to the uniformity correction
		D5 to D	0 : UNIF_D	Built- in un	iformity cor	rection me	mory data			memory for white correction
										is available.

Description of the Operations of the Analog Circuits

The configuration of the analog processing circuits is shown in Fig. 17.

(1) Sensor selection circuit

The four types of sensors in the table can be connected to the circuit.

Register 02H	Sensor type
CCD	CCD sensor
CIS1	CIS sensor which outputs light voltages (white voltage) of 3.5V or lower
CIS2	CIS sensor which outputs light voltages (white voltage) of 2V or lower
CIS3	CIS sensor which output shielding pixels for each line

<CCD mode>

The amplitudes of sensor signals are multiplied by -4 through the two operating amplifiers directly after the switch to select the CCD mode. (The waveforms of the signals are inverted at the same time.) As a result, the sensor signals input to the sample and hold circuit have a dark voltage of 2.2V.

<CIS1 mode>

<CIS2 mode>

<CIS3 mode>

As a result, the sensor signals input to the sample and hold circuit have a dark voltage of 2.2V.

The amplitude of signals input from the sensor are halved. Then,

their reference potential is shifted up to 2.2V.

The reference potential of signals input from the sensor is shifted up to 2.2V.

As a result, the sensor signals input to the sample and hold circuit have a dark voltage of 2.2V.

Sensor signals with a dark voltage of 2.2V clamped by line clamping input are directly input to the sample and hold circuit.

(2) Line clamping circuit

This circuit is used for CCD (line clamping mode) and CIS3. The reference voltage (dark voltage) output in the shielding pixel part of the sensor is sampled by LCMP (line clamping pulses) and shifted up to the internal reference voltage of 2.2V. This is not used for the CIS1 or CIS2 input sensor (set off constantly).

: register 02 (LCMPS)

(3) Sample and hold circuit and bit clamping circuit

In the CCD mode, bit clamping, as well as line clamping, can be performed. The blanking elements of each pixel of sensor output is sampled by BTCMP (bit clamping pulses). The differences of signals from the reference potential sampled by the bit clamping circuit are input to the gain control circuit of next step as signaling elements. To turn off bit clamping, set BLS invalid, so that the reference potential will be fixed at the internal reference potential of 2.2V.

: register 02 (BLS)

(4) Gain control circuit

The amplifying factor (gain) must be adjusted so that the amplitudes of sensor signals can come within the dynamic range of the A/D converter. The gain is set through the automatic gain control in the AGC mode (register 00) or directly through the register 18 (GAIN <7 : 0>). The gain changes within the following ranges according to the sensor used.

Mode	Amplifying factor of signals (gain)
CCD	4 to 20
CIS1	0.5 to 2.5
CIS2	1 to 5
CIS3	1 to 5

In the AGC mode, the gain control counter is set at the greatest gain in the initial state and then counted down each time an overflow bit is output from the A/D converter. The count (gain) of the gain control counter is directly read/written through the register 18 (GAIN <7 : 0>). The counting operation of the counter can be controlled through the register 16 (AGCSTP).

(5) Internal reference voltage

Internal reference voltage source for the analog circuits:

this generates the reference voltage (2.2V) for the line clamping circuit, the sample and hold circuit, and the bit clamping circuit. A/D converter reference voltage generation circuit:

this generates VWL (white level reference voltage of 3.8V) and VBL (black level reference voltage of 1.8V) for the A/D converter.

(6) Black level clamping circuit

This circuit adjust the level of reference voltage to the A/D converter from analog circuits.

The black clamping circuit is used in the CCD or CID3 mode. (See Figs. 18, 19 and 22) The GCAO pin and the BCMI pin are capacity-coupled. The output reference potential in the shielding pixel part of sensor signals are applied to the BCMV pin as the VBL (black level reference voltage of 1.8V) for the A/D converter.

BLCMP (black level clamping pulses) are generated concurrently with the shielding pixel part of each line. To turn off this circuit, set BLCMPS invalid and apply the black level reference voltage of the A/D converter to the BCMV pin. : register 02 (BLCMPS) In the CIS1 or CIS2 mode, the LEVAJ pin is used. (See Figs. 20 and 21) Voltage is applied to the LEVAJ pin so that the reference potential of output at the GCAO pin can be adjusted to the VBL (black level reference voltage of 1.8V) of the A/D converter. Set voltage input to the LEVAJ pin as follows.

$$\label{eq:VLEVAJ} \begin{split} & \mathsf{VLEVAJ} = \mathsf{VVBL} - \mathsf{A} \times \mathsf{Gv} + 0.2 \; [\mathsf{V}] \\ & \mathsf{VGCAO} = \mathsf{VLEVAJ} + \mathsf{Gv} \times \mathsf{VIN} \; [\mathsf{V}] \\ & \mathsf{where}, \end{split}$$

A: the lowest limit of dark voltage of the sensor [V] Gv: gain (multiplying factor) of the gain control circuit VIN: signals input from the sensor [V]

Fig. 17 Circuit Configuration of the Analog Part of the M66335FP

M66335FP

ANALOG CIRCUIT TIMING CHART (FOR CCD MODE/BIT CLAMPING)

ANALOG CIRCUIT TIMING CHART (FOR CCD MODE/LINE CLAMPING)

D1

0

D0

CIS1

1

FACSIMILE IMAGE DATA PROCESSOR

ANALOG CIRCUIT TIMING CHART (FOR CIS1 MODE)

ANALOG CIRCUIT TIMING CHART (FOR CIS3 MODE)

SH

CK1

CIS

Regist	er Address	00H	02H						
	Bit	D6	D6	D5	D4	D3	D2	D1	D0
Mode	Signal	SENS	LCMPS	BLS	BLCMPS	CCD	CIS3	CIS2	CIS1
CIS3	Setting	1	1	0	1	0	1	0	0

 $\textbf{MITSUBISHI} \left< \textbf{DIGITAL} \textbf{ ASSP} \right>$

M66335FP

MITSUBISHI (DIGITAL ASSP)

---- (dashed line) : clock line (bold line) : signal line LCMP MCIS<3:1>,MCCD Digital circuit GND ν CCC GAIN<7:0> OF DIN<6:0> S/H BTCMP BLCMP RESET ADCK BLS **BCMI BCMO** BCMO Reference voltage generating circuit for the A/D converter ł AGCSEL<7:0> clamping circuit 6-0 CZ GCAOLEVAJ BCMV BLCMP BCMI Vref+ B<7:1> BCMV=VBL Ь Gain control circuit Black level ADIN A/D converter -----DGND (\Box) DVcc GCAOV V LEVAJ BCMV AGND AVcc Vref- Vri+ 4 VREFH VREFL RESET -C1C2 Max.5pF l (In the case of the pixel clock of 1 MHz) ξ -----Vri-Sample and hold circuit ∕₹ ADIN Internal reference voltage source for the analog circuits R1 R2 VLEVAJ 3.8V VBL VWL ω S/H BTCMPBLS Bit clamping circuit 1.8V •••••• Vri+ ζrị-2.2V AVDD MCIS<3:1>, MCCD AGND DGND GND Vcc A : minimum limit for dark voltage of the sensor Set R1 and R2 so that the following equation will hold. $V_{LEVAJ} = V_{\underline{VBL}} - A \times B + 0.2 \text{ [V]}$ MCIS2 DVcc Level shift circuit (2.2V) - MCIS3 MCIS1 NCCD V AVcc Input clamping Gr : gain of the gain control circuit Å AGND circuit AN CMP I AIN Max.2V ±200mV Sensor output where, C Black White

MITSUBISHI (DIGITAL ASSP)

Fig. 21 External pin connections of the analog part (for the CIS2 mode)

M66335FP

FLOWCHART: READING OPERATIONS (FOR THE CCD SENSOR)

MITSUBISHI (DIGITAL ASSP)

Register 06 and 07

Reading a single page

Register 00

Register 15

Register 16

Register 17

Register 00

FACSIMILE IMAGE DATA PROCESSOR

Â Software reset Register 00 Image processing function S/H: SH pulse width Register 01 Reading an original sheet starts. Register 02 Sensor control Specifying the scaling factor for vertical scanning Cvcle counter Registers 03 and 04 SRDY setting Start pulse Initial Register 05 Ν INT generated? setting Registers 08 to 0E Image processing parameters Y Ν Page end? Writing the dither pattern Register 10 γ Ν Reading the original sheet ends. Completed? ١ Υ Fransfer to be continued? writing γ correction table Register 0F N 1 line cycle N Completed? ×2 wait Next original sheet The light source is Peak value detection The light source is turned on. turned off. Power off? (white reference) AGC starts. Register 00 Ñ Becomes stable. AGC: 16 times Next original sheet? Next original 1 line cycle \times 20 (or 16 or more) wait AGC ends. Register 00 sheet N The light source is turned off. Uniformity correction mode (black) Black correction V Registers 00 and 01 Becomes stable Power off Uniformity correction starts. Register 00 End Black correction: 8 times 1 line cycle ×10 (or 8 or more) wait Uniformity correction ends. Register 00 The light source is turned on (white reference) Uniformity correction mode (white) White Registers 00 and 01 Becomes stable correction Uniformity correction starts. Register 00 White correction: 8 times 1 line cycle ×10 (or 8 or more) wait Uniformity correction ends. Register 00 Specifying the horizontal scanning resolution Register 06 Setting for the original Writing the resolution change table Register 15 Ν Completed? Y Specifying the vertical scanning resolution Register 06 I sheet Original sheet width Registers 01 and output width and 11 to 14

READING OPERATIONS (FOR THE CIS SENSOR)

Start

Power on

(A)

M66335FP

FACSIMILE IMAGE DATA PROCESSOR

ABSOLUTE MAXIMUM RATINGS (Ta = -20 ~ 75°C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 ~ +6.5	V
Vi	Input voltage		-0.3 ~ Vcc+0.3	V
Vo	Output voltage		0 ~ Vcc	V
AVcc	Analog supply voltage		Vcc -0.3 ~ Vcc +0.3	V
DVcc	Supply voltage		Vcc -0.3 ~ Vcc +0.3	V
Vwl	Reference voltage (white)		-0.3 ~ AVcc +0.3	V
VBL	Reference voltage (black)		-0.3 ~ AVcc +0.3	V
VAIN	Analog input voltage		-0.3 ~ AVcc +0.3	V
Tstg	Storage temperature		-55 ~ +150	°C

RECOMMENDED OPERATIONAL CONDITIONS

Sumbol	Derometer		Linit		
Symbol	Parameter		Тур.	Max.	- Unit
Vcc	Supply voltage (for the digital system component)	4.75	5.0	5.25	V
GND	GND voltage		0.0		V
Vi	Input voltage	0		Vcc	V
AVcc	Analog supply voltage	4.75	5.0	5.25	V
Agnd	Analog GND voltage		0.0		V
DVcc	Supply voltage (for the digital system component)	4.75	5.0	5.25	V
Dgnd	GND voltage		0.0		V
VAIN	Input range: $VWL \le AVcc$; $VBL \ge AGND$	1.8	2.0	2.2	VP-P
Topr	Operating temperature	-20		+75	°C

Note: Connect the analog system component and the digital system component separately to power supply on the evaluation board for noise prevention.

Symbol	Demonstra		To show with a s				
	Parameter		Test conditions	Min.	Тур.	Max.	Unit
VIH	"H" input voltage			2.0			V
VIL	"L" input voltage					0.8	V
VT+	Positive direction input threshold					2.4	V
VT-	Negative direction input threshold			0.6			V
Vн	Hysteresis value				0.2		V
Voh	"H" output voltage		IOH = -12mA	Vcc-0.8			V
Vol	"L" output voltage		IOL = 12mA			0.55	V
Voh	"H" output voltage		IOH = -4mA	Vcc-0.8			V
Vol	"L" output voltage		IOL = 4mA			0.55	V
Іін	"H" input current		Vcc = 5.25V VI = 5.25V			1.0	mA
lıL	"L" input current		Vcc = 5.25V VI = 0V			-1.0	mA
Іоzн	"H" input current in the off state		Vcc = 5.25V Vo = 5.25V			5.0	mA
Iozl	"L" input current in the off state		Vcc = 5.25V Vo = 0V			-5.0	mA
IAIN	Analog input current					1.0	mA
RL	Reference resistance				120		Ω
Ed	Differential non-linear error				±1.0		LSB
Iccs	Static current dissipation (during standby)		VCC = 5.25V VI = VCC, GND		21	35	mA

ELECTRICAL CHARACTERISTICS (Ta = -20 ~ 75°C, Vcc = 5V±5% unless otherwise noted)

Course had	Parameter		Test see ditions	Ratings			- Unit
Symbol	Parameter		Test conditions	Min.	Тур.	Max.	Unit
tc (SYS)	System clock cycle			50			ns
tw+ (SYS)	System clock "H" pulse width			25			ns
tw– (SYS)	System clock "L" pulse width			25			ns
tr (SYS)	System clock rise time					20	ns
tf (SYS)	System clock fall time					20	ns
tw (RD)	Read pulse width			100			ns
tsu (CS-RD)	Set-up time before read	CS		20			ns
tsu (A-RD)	Set-up time before read	A0 ~ A4		20			ns
tsu (DAK-RD)	Set-up time before read	DAK		20			ns
th (\overline{RD} - \overline{CS})	Hold time after read	CS		10			ns
th (RD-A)	Hold time after read	A0 ~ A4		10			ns
th ($\overline{\text{RD}}$ - $\overline{\text{DAK}}$)	Hold time after read	DAK		10			ns
tw (WR)	Write pulse width			100			ns
tsu (\overline{CS} - \overline{WR})	Set-up time before write	CS		20			ns
tsu (A-WR)	Set-up time before write	A0 ~ A4		20			ns
tsu (D-WR)	Set-up time before write	D0 ~ D7		50			ns
th (\overline{WR} - \overline{CS})	Hold time after write	CS		20			ns
th (WR-A)	Hold time after write	A0 ~ A4		10			ns
th (WR-D)	Hold time after write	D0 ~ D7		0			ns
th (STIM-SRDY)	Hold time after STIM	SRDY		0			ns

TIMING CONDITIONS (Ta = $-20 \sim 75^{\circ}$ C, Vcc = $5V\pm5\%$ unless otherwise noted)

Sumbol.	Demenseter	Test seeditions		Unit			
Symbol	Parameter	Test conditions	Min.	Тур.	Max.		
tPZL (RD-D)	Enable time for data output after read				75	ns	
tPZH (RD-D)		CL = 150pF				ns	
tPLZ (RD-D)	Disable time for data output after read	CL = 150pr	10		50	ns	
tphz (RD-D)			10		50	ns	
tphl (RD-DRO)	Propagation time of DRO output after read	CL = 50pF			50	ns	

SWITCHING CHARACTERISTICS (Ta = -20 ~ 75°C, Vcc = 5V±5% unless otherwise noted)

TEST CIRCUIT

Parameter	SW1	SW2
tPLH, tPHL	Open	Open
tPLZ	Closed	Open
tPHZ	Closed	Closed
tPZL	Closed	Open
tPZH	Open	Closed

(1) Characteristics (10% to 90%) of the pulse generator (PG): tr = 3ns; tf = 3ns

(2) Capacitance CL (= 150pF) includes the stray capacitance of connections and input capacitance of the probe.

SYSTEM CLOCK

M66335FP

FACSIMILE IMAGE DATA PROCESSOR

MPU INTERFACE

1) Timing for read operation (M66335 \rightarrow MPU)

2) Timing for write operation (MPU \rightarrow M66335)

DMA TIMING

Timing for read operation (M66335 \rightarrow system bus)

Timing of CODEC

Cautions for Use

(1) Access to Address 00h

To gain access to address 00h, the value of built-in GCC (gain control counter) may be set to FFh.

This requires to read GAIN value at address 18h before access to address 00h and write the GAIN value at address 18h after the access (see Flowchart A).

Flowchart A. Address 00h Access Flow

(2) Reset

The M66335FP adopts the two types of reset. These reset functions are provided in Table A.

Table A. Reset functions

Function Reset type	Register initialization	Internal F/F initialization	GCC initialization
Hardware reset (RESET)	\bigcirc	\bigcirc	\bigcirc
Software reset register 0 (RESET)		\bigcirc	\bigcirc

