

DESCRIPTION

The M66332 is a facsimile image processing controller that converts analog signals that are photoelectrically converted by an image sensor into bi-level signals.

It has image processing functions such as peak detection, uniformity correction, γ correction, MTF compensation, detector of background and object levels, dither control, separation of image data area, scale down, and area specification. This controller has a built-in 5-bit flash type A-D converter and interface circuits to image sensor, analog signal processing circuit, and CODEC (Coder & Decoder) to simplify control of the readout mechanism.

FEATURES

OHigh Speed Scan (MAX. 2 ms/line, TYP. 5 ms/line)
OA3 (8 pixels/mm) Line Sensor Attachment
OImage sensor (CCD,CIS) control signal generation CCD: SH, CK1, CK2, RS Contact sensor (CIS): SH, CK1 (or CK2) **0** Analog signal processing circuit control signal generation CLAMP, S/H, AGC, DSCH

0 Built-in 5-bit Flash Type A-D Converter

0Bi-level data external input/output interface Serial output $(\rightarrow M66330)$

8-bit MPU bus output with external DMA control signal 0 Image data processing

γ correction

Uniformity correction (block correction in units of 8 pixels) MTF compensation (1 dimension)

Detector of background and object level (programmable) Dithering control

• Dither method (16 levels using 4 × 4 matrix) Separation of image data area (1 dimension) Scale down A3 \rightarrow B4, A3 \rightarrow A4, B4 \rightarrow A4

05V Single Power Supply

APPLICATION

Facsimiles

FACSIMILE IMAGE DATA PROCESSOR

Table 1 Image Processing Functions

Image Processing Function	Specifications	Remarks
Read Width	• A4, B4, A3	
Resolution	8 pixels/mm (primary scanning direction)	
Read speed	• 5ms/line Typ. 2ms/line maximum	Operated with system clock and PRE_DATA (registers 2, 3)
Uniformity Correction	 White correction only Block correction in units of 8 pixels 50% Correction range 	• Built-in SRAM as correction memory (304 words × 5bits) (read/write allowed from MPU)
MTF Compensation	• Laplacian filter circuit for 3 × 1 pixels in current line (1 dimension)	No need for compensation memory
Simple Bi-level Conversion	Floating threshold method using background and object level detection circuit	
Pseudo half-tone	• Dither method: 16 levels (4 × 4matrix)	• Built-in SRAM as dither memory (16 words × 4bits) (read/write allowed from MPU)
Separation of Image Data Area	Detection by brightness difference in 5 × 1 pixels area in current line	No need for processing memory
Scale down	• Selection method	
γ Correction	Logarithmic correction	Apply external voltage (resistor connection is also allowed) to A-D converter middle basic supply voltage pins.
Image Sensor Control Signal	Control signal generation for contact sensor (CIS) and scale down CCD	
Analog Signal Processing	Generate control signals for external CLAMP circuit, sample/hold circuit, and AGC circuit	Built-in 5-bit flash A-D converter

PIN DESCRIPTIONS

Block	Pin Names	I/O	Description		
Sensor Interface	SH	0	CCD: Shift pulse signal to transmit photo charges from the sensor to the transfer unit. CIS: Start signal for the sensor read circuit.		
	CK1	0	CCD: Clock pulse signal for sequentially transmitting the transfer unit signal charge of the sensor. CIS: Clock pulse signal for the sensor read circuit shift register.		
	CK2	0	Reverse of CK1.		
	RS	0	Pulse to reset the voltage of the CCD sensor floating capacitor to initial status.		
	PTIM	0	Read roller pulse motor control signal.		
Analog Circuit	CLAMP	0	CLAMP pulse to set the dark level of the sensor to reference voltage of the digital circuit.		
Interface	S/H	0	Sample-hold signal to smooth out sensor image signal waveform.		
	ASIG	I	Analog signals.		
	AGC	0	External AGC circuit gain down signal.		
	DSCH	0	External AGC circuit gain up signal.		
CODEC Interface	SRDY	I	Data transmission ready signal from CODEC.		
	STIM	0	Data transmission bound signal for CODEC.		
	SCLK	0	Clock signal for transmitting image data to CODEC.		
	SVID	0	Serial output of image data to CODEC. "H": Black; "L": White.		
DMA Interface	DRQ	0	DMA request signal to external DMA controller for parallel output of image data through MPU bus.		
	DAK	I	DMA acknowledge signal from external DMA controller for the above DRQ signal.		
Clock	SYSCK	I	System clock input pin.		
MPU Interface	RESET	Ι	System reset signal. Resets counter, register, F/F, and latch, sets internal memory in standby mode, and halts clock generation circuit.		
	CS	Ι	Chip select signal used by MPU to access M66332. Set to "H" in operating mode (AGC, UNIF, SCAN).		
	RD	I	Control signal used by MPU to read data from M66332.		
	WR	I	Control signal used by MPU to write data to M66332.		
	A0~A3	I	Address signals used to access M66332 internal registers.		
	D0~D7	I/O	8-bit bidirectional buffer.		

Block	Pin Names	I/O	Description		
Others	Vcc		us supply voltage.		
	AVcc		Plus supply voltage for A-D converter analog units.		
	DVcc		Plus supply voltage for A-D converter logic units.		
	GND		GND pin.		
	AGND		Ground for A-D converter analog units.		
	DGND		Ground for A-D converter digital units.		
	VWL		A-D converter white basic supply voltage pin.		
	VBL		A-D converter black basic supply voltage pin.		
	VML1		Middle basic supply voltage pin. VML1 =(VWL - VBL) /4		
	VML2		Middle basic supply voltage pin. VML2 =2 · (VWL – VBL) /4		
	VML3		Middle basic supply voltage pin. VML3 =3 · (VWL – VBL) /4		
	TEST(IN)		Test input pin. Fix to "L".		
	TEST(OUT)		Test output pin. Keep open.		

PIN DESCRIPTIONS (CONTINUED)

FUNCTIONAL DESCRIPTION

The following items which are necessary to use the image processing functions of the M66332 are described.

- (1)Operating mode
- (2) Line period and read sequence
- (3) Image processing function
- (4) Sensor unit/analog signal processing unit interface
- (5) CODEC interface
- (6) Read/write to dither memory and uniformity correction memory
- (7) Reset
- (8) Image quality control using registers

(1) Operating mode

The M66332 performs three basic operations.

- Peak value detection: The peak value of the analog signal output from the analog signal processing circuits is matched to the white reference voltage (VWL) of the M66332 internal A-D converter. (See also Figs. 19 to 22 in the M66333FP document.)
- · Uniformity correction data creation: White reference data is created for sensor unit uniformity correction and written to the correction memory (SRAM: 304 words \times 5bits).
- Read operation: A document is read and the image is processed to output bi-level data as serial or parallel output.

These three basic operations are performed in the following sequence depending on whether the sensor is CCD or CIS. The sensor is selected with register 0 (SENS).

When the sensor is CCD:

Operation is started by setting the UNIF command in register 0 to "H". If the sensor is CCD, peak detection (16 line periods) and white uniformity correction data creation (8 line periods) are performed consecutively.

To exit this operating mode, wait 30 line periods (at least 24 lines) from the start and set the UNIF command to "L".

The read operation is started by setting the SCAN command in register 0 to "H".

Set the SCAN command to "L" to exit this operation mode.

When the sensor is CIS:

(Creation and transmission of uniformity correction data)

Peak detection is performed for 16 line periods when the AGC command in register 0 is set to "H". To exit this operating mode, wait 20 line periods (at least 16 lines) from the start and set the AGC command

The read operation is started by setting the SCAN command in register 0 to "H".

Set the SCAN command to "L" to exit this operating mode.

The signal functions and data flow in each mode are shown on pages 4-123 and 4-124. Flowcharts are shown on pages 4-158 to 4-160.

Operation During Peak Detection

Data Flow in Creation of Uniformity Correction Data

Date Flow During Read Operation (for parallel output)

(2)Line period and read Figure 1 shows the relati	sequence onship between the M66332 line	 Uniformity correction range (UNIFG): 	Defines the uniformity correction range. This range corresponds to
period and the read seque • 1 line period (1/ACCK):			the sensor width (A3 to A4). Refer to Table 2 for the relation- ship between sensor width and
	determined from the line period counter registers 2 and 3 (PRE_DATA) and pixel transmis- sion clock (ADCK). ADCK is 1/ 16th of SYSCK.	AGC range (AGCG):	uniformity correction range. Defines the peak detection range. This range corresponds to the sensor width (A3 to A4). Auto gain control is performed for
= (PRE_DATA + 1) \times 1/A	ixel transmission clock period [NS] DCK [NS]		the entire width (solid line) of the sensor in AGC mode and for the range inside the sensor width
= (PRE_DATA + 1) × 16/3	SYSCK [NS] The line period counter is counted down with the pixel transmission clock after loading		(dotted line) in SCAN mode. Refer to Table 2 for the relation- ship between sensor width and AGC range.
• Sensor start pulse (SH):	the PRE_DATA value and gener- ates the following addresses. Image sensor start pulse. The po- sition of the start pulse is deter- mined by the value in register 4 (ST_PL) which is the offset from the uniformity correction range (UNIFG). Set ST_PL to the following values	Source document read width:	Defines the source document read width. If the document width is less than the sensor width, the document should be centered on the sensor because the read range is set from the center of the sensor. Refer to Table 3 for the relation- ship between sensor width and
	according to the type of image sensor. CCD: ST_PL = sensor dummy pixel + 2 CIS: ST_PL =2	• Pulse motor control signal (PTIM):	source document read width. Generates the pulse motor con- trol signals for the read roller.

Fig. 2 CODEC Interface and read sequence

Table 2 Sensor width and gate signal range

Sensor width Gate signal		A3 B4		A4
Uniformity correction range (UNIFG)		2487/55	2279/231	2119/391
AGC	AGC mode	2487/55	2279/231	2119/391
range (AGCG)	SCAN mode	2370/162	2194/306	1760/740

Table 3Source document read width according to
sensor width and source document size

Sensor width Source document size	A3	B4	A4
A3	2487/55	_	—
B4	2278/230	2278/230	—
A4	2118/390	2118/390	2118/390

(3) Image processing function

The M66332 converts image signals from the image sensor to bi-level signals. Bi-level conversion can be either simple bilevel conversion or pseudo half-tone conversion which converts image shades into bi-levels.

The signal output from the image sensor must be corrected and compensated to reduce distortion and degradation before it can be converted to bi-level signals.

Furthermore, for reduction in transmission time, separation of image data area and optimum bi-level conversion must be performed.

The functions necessary for image processing are described below.

- Peak detection
- Uniformity correction
- MTF compensation
- Background and object level detection (simple bi-level conversion)
- Pseudo half-tone dither method
- Separation of image data area
- Image scale down/area specification

Peak detection

The A-D converter of the M66332 is used with its reference voltages (VWL, VBL) fixed. Normallly, VWL is set to Vcc and VBL, is set to 0V to keep the dynamic range of the A-D converter wide. Peak detection must be performed for analog signals to match them with the full scale value of the A-D converter before they are input to the A-D converter.

Peak detection is performed by reading white data in AGC mode, one of the three M66332 operating modes (AGC, UNIF, SCAN).

In AGC mode, 8-line period worth of DSCH signal to raise gain—for gain control—and 16-line period worth of AGC signal to lower gain—for the overflowing of the A-D converter are generated after AGC command start (register 0: AGC) as shown in Fig. 3.

This changes the gain as shown in Fig. 4.

Fig. 4 Changes in gain during peak detection

Uniformity correction

Uniformity correction corrects the drop in lighting level at both ends of the light source, shading distortion due to drop in lighting level at the rim of the lens, and high frequency distortion caused by the scattering of pixel-unit image sensor characteristic (see Fig. 5).

The M66332 creates uniformity correction data in UNIF mode, one of the three operating modes (AGC, UNIF, SCAN), handling 8 pixels as a unit as shown in Fig. 6. The created data is written to the internal correction memory (SRAM: 304 words \times 5 bits).

In SCAN mode, the correction data is read from the internal correction memory to successively correct the input image data in pixel units.

Fig. 5 Image sensor white data output waveform

Fig. 6 Creation of uniformity correction data

Correction

The M66332 performs entire pixel correction for 50% correction range as shown in Fig. 7.

Correction is not possible if the white correction data exceeds the 50% correction range as shown in Fig. 7. Therefore, be sure to keep the input signal within the correction range.

Fig. 7 Uniformity correction

• MTF compensation

As shown in Fig. 8, characters and photos that have been photoelectrically converted by the sensor unit are characterized by a drop in resolution. The MTF compensation performed by the M66332 enhances the high frequency components with a Laplacian filter to maintain the resolution of the image data and creates a perception of increased dynamic range.

MITSUBISHI (DIGITAL ASSP)

FACSIMILE IMAGE DATA PROCESSOR

Background and object level detection

The M66332 uses the floating threshold method rather than the fixed threshold method. This method successively generates a threshold for optimum simple bi-level conversion of the target pixel.

Therefore, a threshold matching the picture data is generated without modifying the image data.

This value is used as the threshold of the bi-level area when simple bi-level conversion or image separation is selected as bi-level conversion mode.

: register 5 (MODE)

Background level counter

If an image data greater (brighter) than the current counter value is input, this counter is incremented to approach the image data.

If an image data less (darker) than the current counter value is input, this counter is decremented to approach the image data.

The count up/down speed can be set with the following register.

: register 9 (MAX_UP, MAX_DOWN)

The lower limit of the background level can be set with the following register.

: register B (LL_MAX)

Object level counter

If an image data greater (brighter) than the current counter value is input, this counter is incremented to approach the image data.

It an image data less (darker) than the current counter value is input, the image data is set to this counter.

The count down speed can be set with the following register. : register 9 (MIN_UP)

The upper limit of the character level can be set with the following register.

: register A (UL_MIN)

Fig. 9 Background-object level

FACSIMILE IMAGE DATA PROCESSOR

• Dither method

The M66332 has a built-in 16 words \times 4 bits SRAM which is used as a collective dithering memory.

During initialization, threshold values are written in the dither memory, matching the desired dither pattern into 4×4 dither matrix.

: register E (DITH_D)

Fig. 10 Collective dither pattern

Fig. 10 shows some examples of dither patterns.

Refer to the section on dither memory and uniformity correction memory read/write for details on how to read/write the dither memory.

This is used when dither method and image data area separation are selected for bi-level conversion mode during read. : register 5 (MODE)

Table 4 Scanning line density and dither matrix size

Scanning Line Density			Matrix Size
Normal	8 × 3.85		
Fine	8×7.7	16	4×4

Separation of image data area

In order to perform bi-level conversion appropriate for the image, a black and white image is separated into bi-level conversion area and gradation conversion area. Simple bi-level conversion is applied to the bi-level conversion area and dither method is applied to the gradation area. : register 5 (MODE)

Fig. 11 Separation of image data area

• Image scale down/area specification Scale down function

The image data input from the analog signal processing circuit can be scaled down (A3 \rightarrow B4, A3 \rightarrow A4, B4 \rightarrow A4) by leaving out pixels in the primary scanning direction for bi-level conversion.

: register 1 (SOURCE, DEST, REDU) Scale down in secondary scanning direction can be performed in the same rate by MPU program.

Table 5 Scaling rate

	A3	B4	A4	
B4	13/15	1	_	
A4	12/17	9/11	1	

Area specification function

When area specification is selected, bi-level conversion is performed only in the specified area from the center of the source document as shown Fig. 12.

: register 1 (SOURCE, DEST, REDU)

Fig. 12 Cut out function

(4) Sensor unit/analog signal processing unit interface CCD-bit clamp type

CCD-line clamp type

Note: Line clamp uses sensor output equivalent to (dummy area –8) pixels from the first pixel after SH.

Note: CLAMP: In case of CIS, check with the sensor manufacturer for the use of CLAMP. SH and CK1, CK2: SH can be selected with register 5 and CK can be selected with CK1 and CK2 (2 choices each) to provide interface with various types of CIS.

(5) CODEC interface Serial output

Note: A is determined by register 4 (ST_PL), and B is determined by register 1 (SOURCE, DEST, REDU).

Note: Handshaking of three lines SRDY, SH, and STIM, which are interface to the CODEC, is the same as serial output.

(6) Read/write to dither memory, uniformity correction memory

ing dither patterns in the 16 words $\times\,4$ bits collective dithering SRAM built in the M66332.

The following figures show the sequence for writing and read-Dither memory write (MPU \rightarrow M66332)

Dither memory read (M66332 \rightarrow MPU)

- ① Clear D4 (PO) in register 1 to "0" in order to set the MPU bus (D7 D0) to dither matrix memory data output mode.
- ② Set D7 (RESET) in register 0 to "1" in order to reset the dither memory address counter.
- ③ Select DITH_D with register E and write DATA (0) on the MPU bus (D5 D0). Increment the address counter of the dither memory at the rising edge of WR. (during write)
- ④ Select DITH_D with register E and read DATA (0) in dither memory to the MPU bus (D5 D0). Increment the address counter of the dither memory at the rising edge of RD. (during read)

Dither matrix address

A0	A1	A2	A3	
A4	A5	A6	A7	
A8	A9	A10	A11	
A12	A13	A14	A15	
4×4 matrix				

FACSIMILE IMAGE DATA PROCESSOR

The M66332 can read/write uniformity correction data in the external correction SRAM through the MPU bus. This enables the uniformity correction data to be temporarily saved

in backup memory during power off. The following figures show the uniformity correction data read/write sequence.

Uniformity correction memory write (MPU \rightarrow M66332)

Uniformity correction memory read (M66332 \rightarrow MPU)

					D3				
R2	A4	A3	A2	A1	A0	0	0	0	
R3	0	*	0	0	A8	A7	A6	A5	
<u></u>									
D_LOAD : 0 for normal									

1 for data load A8~A0 : UNIF memory address

- ① The last 5 digits (A4 A0) of an address in the UNIF memory are written in register 2.
- ② The initial 4 digits (A8 A5) of the address in the UNIF memory and D_LOAD = "1" (D6) are written in register 3.
 - Steps ① and ② identifies the address in the UNIF memory.
- ③ The UNIF memory is selected with register F, and DATA on the MPU bus (D4 D0) is written at the identified address.
- ④ The UNIF memory is selected with register F, and DATA stored at the identified address is read to the MPU bus (D4 – D0).
- Initial setting: D7 (UM_R/W) and D4 (P0) of register 1 are set to "1" and "0", respectively, to select read/write mode of uniformity correction memory.
- Closing setting : D7 (UM_R/W) of register 1 is set to "0" while D4 (P0) is set to that taken in operation, to cancel read/write mode of uniformity correction memory.

Address Space

Sensor width	Left end address	Right end address
A3	310	7
B4	284	29
A4	264	49

Dither memory write/read

Uniformity correction memory write/read

FACSIMILE IMAGE DATA PROCESSOR

Used as standby mode. The internal clock is

stopped by stopping the clock generator which

generates the internal clock from the system

clock. Therefore, the internal circuit is stopped

The period counter and register statuses are

saved and the internal memory is placed in

(7) Reset

The M66332 has three types of reset. Each reset function is described below.

Hard reset: Initializes the circuit. Hard reset also performs the following soft reset and standby reset.

Soft reset: Used when cancelling a line read operation in the middle during SCAN mode. Read operation is resumed starting from the next line.

Table 6 Rese	Table 6 Reset function							
Reset Type	Function	Initialize Register	Initialize Internal F/F	Reset Period Counter	Stop Clock Generator Operation	Stop Line Read		
Hard Reset RESET		0	0	0	0			
Soft Reset Register 0 (RESET)						0		
Standby Register1 (STNBY)			0		0			

Standby :

(8) Image quality control using registers

MTF compensation

If the sensor has high resolution, resolution compensation need not be performed for half-tone area.

MTF compensation should be performed for bi-level area regardless of the sensor resolution in order to achieve good object reproduction.

• Simple bi-level conversion, background and object level detection

Set the background level detection and object level detection counters as follows in order to obtain clear output of objects that do not have completely white background and that are not entirely black.

fast

MAX_UP > MAX_DOWN > MIN_UP

The output becomes darker as bi-level conversion threshold coefficient (SLICE) is increased.

Select a large SLICE value for light source document.

· Pseudo half-tone conversion, dither method

and power is saved.

standby mode.

Select collective dithering (16 gradations using 4×4 dither matrix) for fine mode. Refer to the section on image processing function for details on providing dither pattern threshold.

• Separation of image data area

The optimum parameter is selected to perform the best bilevel conversion for each area: simple bi-level conversion for the object and pseudo half-tone conversion for half-tone.

Table 7 shows the recommended values for parameters related to picture quality.

Use these values as reference to determine the optimum parameter.

Table 7 Recommended parameter values

Imaga	Uniformity Correc-	Resolution	Background and Object Level					γ	Dither	Separation of Image Data Area			
Image	tion	Compensa- tion MTF	SLICE	MAX UP	MAX DOWN	MIN UP	UL MIN	LL MAX	Correction	Pattern	SEPA A		SEPA C
Simple Bi-Level Conversion	Yes	1/2	5/8	Nor- mal	Nor- mal	Nor- mal	04н	0Ан	No	_	_		
Dithering	Yes	MON							γ=0.9 VML1=1.1V VML2=2.2V VML3=3.5V	4×4 diffusion pattern, $\gamma = 0.8$			
Separation of Image Data Area	Yes	MON	5/8	Nor- mal	Nor- mal	Nor- mal	04н	0Ан	γ=0.9 VML1=1.1V VML2=2.2V VML3=3.5V	4×4 diffusion pattern, $\gamma = 0.8$	06н	0DH	01н

Dither pattern ($\gamma = 0.8$)

FACSIMILE IMAGE DATA PROCESSOR

USAGE PRECAUTIONS

Peak detection in SCAN mode

In SCAN mode, successive peak detection is performed for the image data being read as shown for the AGC range (dotted line) in Fig. 1.

This enables better picture reproduction when picture data brighter than the white reference used during peak detection is input in SCAN mode.

This is especially effective for sensor units such as CIS that do not have a built-in white reference.

Read operation with CIS sensor

If the sensor is CIS, it is possible to select whether or not to use white correction in SCAN mode.

Do not select white correction for the input of analog signals already processed by entire pixel correction.

Collective dithering

Thresholds written in dither matrix should be between 1 and 15 excluding 0 as shown in Fig. 13.

As the M66332 carries out block correction in 8-bit units for uniformity correction, a CIS sensor may generate background noises due to irregularity of pixels.

It is possible to remove noises and gain a fine image quality by reducing the maximum threshold value as shown in Fig. 14.

Fig. 15 An example of γ correction by dither matrix

γ correction

 γ correction is performed to simulate the sensitivity characteristics (exponential nature) of the human eye in order to make the image data more similar to natural image.

 γ = 0.45 is said to be the optimum correction when using a thermal head printer.

The M66332, due to its capacity to handle 4-bit internal data, performs γ correction by means of both collective dithering and the middle reference voltage pins (VML1, VML2, and VML3) of the A-D converter.

(y Correction by Collective Dithering)

 γ correction is realized applying a γ characteristic to the threshold value to be written in the dither matrix as shown in Fig. 15. The example given in Fig. 15 is an approximation of γ characteristic, γ , to 0.8.

(γ Correction by the Middle Reference Voltage Pins of the A-D converter)

The example shown in Fig. 16 is an approximation of γ characteristic, γ , to 0.9 , which is carried out by applying VML1 = 1.1V, VML2 = 2.2V, and VML3 = 3.5V to the middle reference pins of the A-D converter.

Fig. 23 in the M66332FP leaflet shows an example of circuits for applying voltages to middle reference voltage pins.

Fig. 14 Thresholds for collective dithering : Example 2

Fig. 16 An example of γ correction by middle reference pins

TIME function

When TIME = "1" is set in register 1, the processing time per line is doubled to 2 line periods, Data is read once every two line periods and processed.

When the read and write motors operate simultaneously during copy operation, this command can be used to reduce the processing speed to 1/2 in order to reduce the power load.

Fig. 17 When processing speed is 1/2

MITSUBISHI (DIGITAL ASSP)

M66332FP

FACSIMILE IMAGE DATA PROCESSOR

Address	R/W					Explan	ation					
0н	W	D7	D6	D5	D4	D3	D2	D1	D0	_		
		RESET	SENS	SEN	IS_W	UMODE	AGC	UNIF	SCAN	(Default is 00н)		
		D7	D7 RESET System Reset 0 Normal Mode					Reset while write pulse is "L" when D7 = "1"				
		1 Reset Mode										
							-					
		D6	D6 SENS Sensor Type 0 CCD									
		1					-					
					-		_					
		D5 D		SENS_W	Sensor W	/idth]					
		0 0			A4		_					
		0 1			B4		_					
		1 1			A3		-					
		D3	UMODE CIS Uniformity Correction Mode					lo otio a with	or without	correction in SCANnie		
		0		Vith White			 For selecting with or without correction in SCANnir (with CIS only) 					
		1 No White Correction										
		D2		AGC AG	C mode		٦					
		0		Sto			Controls AGC mode start/stop.					
		1		Sta	rt							
		D1		UNIF UNI	F Mode		7					
		0		Sto			Contro	Is UNIF mo	de start/sto	op.		
		1		Sta	rt							
				SCAN SCA			1					
		D0		SCAN SCA	and moule							
		D0 0		SCAN SC/			Contro	ls SCAN m	ode start/s	top.		

..... ~

Address	R/W					Expla	nation				
1н	W	D7	D6	D5	D4	D3	D2	2 D1	D0	_	
		UM_R/W	STNBY	TIME	P_0	SOL	I JRCE	DEST	REDU	(Default is 00н)	
		D7 I	JM_R/W U		orrection Me	emory Rea	d/				
		1			rmal						
			UNIF Memory Read/Write								
		D6			andby Mode	Э		Standby mod	le stops the	clock generation circuit	
		0			rmal					egister status are save is placed in standby	
		1	Standby Mode mode.								
		D5		TIME L	ine Time			• When read and write operations are performed			
		0			Period					ation, the power load ca 2 line period. The	
		1		2 Line	Period			processing s	peed drops	to 1/2 when 2 line perio	
		D4	P_O Parallel Output					• D0 is output i	n LSB form	at and D7, in MSB	
		0		Without Pa	rallel Outpu	ıt		format. When	N SCAN data	a is output in SCAN B (left) format and D0,	
		1 Parallel Output output output in MSB (n				B (right) forr	(right) format.				
		D3 D2	2	SOURC	E Source V	Vidth					
		0 0			A4						
		0 1			B4						
		1 0			A3						
		D1 E	DEST Destir	nation Width	n						
		0	A								
		1	B	4							
		D0 RI	EDU Scale	down/Cut o	ut [Scaling	Rate	• Refe	r to image scale down/	
		0	Cut			$A3 \rightarrow E$		13/15	specification for scale		
		1	Scale	down		$B4 \rightarrow A$		9/11	dowr	i/cut Uul.	
						$A3 \rightarrow A$	\4	12/17			

Address	R/W	Explanation
2н	W	D7 D6 D5 D4 D3 D2 D1 D0 I <td< th=""></td<>
Зн	W	D7 D6 D5 D4 D3 D2 D1 D0 0 D_LOAD PRE_DATA <12:8> (Default is 00H) D6 Uniformity correction memory address setting mode. • This bit is for address setting for the access form MPU to the uniformity correction memory. Set this bit to normal during access operation. D4~D0: PRE_DATA <12:8> Pre Data of Line period Counter (Upper part) • 1 line period is determined from PRE_DATA and pixel transmission clock frequency (ADCK). ADCK is 1/16 of system clock. Refer to line period and read sequence section. D3~D0: If register 3 D_LOAD = "1" these bits will be the address denoted by upper 4 digits (A8~A5) used for read/write operations on the uniformity correction memory.
4н	W	D7 D6 D5 D4 D3 D2 D1 D0 ST_PL <6:0> D6~D0: ST_PL <6:0> Start Pulse of Line sensor ST_PL = (sensor dummy pixel + 2) Refer to line period and read sequence Section.

Address	R/W	Explanation
5н	W	D7 D6 D5 D4 D3 D2 D1 D0 S/H_W SH_W CLAMP MODE MTF (Default is 00H)
		D6 S/H_W Pulse Width of S/H 0 Normal (Sysclk period × 4) 1 Normal × 0.5
		D5 SH_W SH pulse width for CIS In case of CCD, there is only one SH pulse width and this register is ignored. 0 Normal width and this register is ignored. 1 Reverse of (normal × 2)
		D4 CLAMP Clamp Method of Analog Circuit • Line clamp does not apply to CIS. 0 Bit Clamp • Line Clamp 1 Line Clamp • Line clamp
		D3D2MODE Bi-level Mode00Simple Bi-level01Dither10Separation (Simple Bi-level + Dither)11—
		D1D0MTF Main Coefficient of MTF Compensation00NON(0)01A little less (1/4)10Middle (1/2)11A little over (1)
6н	W	D7 D6 D5 D4 D3 D2 D1 D0
		D3~D0: SEPA_A Separation of Image Data Area (Difference)
7н	W	D7 D6 D5 D4 D3 D2 D1 D0 SEPA_B (Default is 00H)
		D3~D0: SEPA_B Separation of Image Data Area (MIN.)

Address	R/W	Explanation							
8н	W	D7 D6 D5 D4 D3 D2 D1 D0 SEPA_C (Default is 00H)							
		D3~D0: SEPA_C Separation of Image Data Area (MAX.)							
9н	W	D7 D6 D5 D4 D3 D2 D1 D0 SLICE MAX_UP MAX_DOWN MIN_UP (Default is 00H)							
		D7 D6 SLICE Detector of Background and Object levels (SLICE) 0 0 Normal (4/8) 0 1 Light (3/8) 1 0 Dark (5/8) 1 1 Darker (6/8)							
		D5 D4 MAX_UP Detector of Background level (Up Counter CLK) 0 0 Normal (T = (1 pixel period) × 32) 0 1 Slow (T = (1 pixel period) × 64) 1 0 Fast (T = (1 pixel period) × 16) 1 1 Faster (T = (1 pixel period) × 8)							
		D3D2MAX_DOWN Detector of Background level (Down Counter CLK)00Normal (T = (1 pixel period) \times 128)01Slow (T = (1 pixel period) \times 256)10Fast (T = (1 pixel period) \times 64)11Faster (T = (1 pixel period) \times 32)							
		$\begin{tabular}{ c c c c c } \hline D1 & D0 & MIN_UP \ Detector \ of \ Object \ level \ (Up \ Counter \ CLK) \\ \hline 0 & 0 & Normal \ (T = (1 \ pixel \ period) \times 512) \\ \hline 0 & 1 & Slow \ (T = (1 \ pixel \ period) \times 1024) \\ \hline 1 & 0 & Fast \ (T = (1 \ pixel \ period) \times 256) \\ \hline 1 & 1 & Faster \ (T = (1 \ pixel \ period) \times 128) \\ \hline \end{tabular}$							
		T: Counter clock period							

Address	R/W	Explanation
Ан	W	D7 D6 D5 D4 D3 D2 D1 D0 UL_MIN (Default is 06H) D3~D0: UL_MIN Detector of background and object levels (upper limit of object level)
Вн	W	D7 D6 D5 D4 D3 D2 D1 D0 LL_MAX (Default is 07H) D3~D0: LL_MAX Detector of background and object levels (lower limit of background level)
Ен	R/W	D7 D6 D5 D4 D3 D2 D1 D0 DITH_D DITH_D DITH_D DITH_D Internal dither memory data • Refer to the section on dither memory and uniformity correction memory read/write for information concerning read/write method.
FH	R/W	D7 D6 D5 D4 D3 D2 D1 D0 UNIF_D UNIF_D Internal uniformity correction data • Refer to the section on dither memory and uniformity correction memory read/write for information concerning read/write method.

FACSIMILE IMAGE DATA PROCESSOR

ABSOLUTE MAXIMUM RATING (Ta = -20 ~ 75°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3 ~ +7.0	V
VI	Input voltage		-0.3 ~ Vcc + 0.3	V
Vo	Output voltage		0 ~ Vcc	V
AVcc	Analog supply voltage		Vcc-0.3 ~ Vcc+0.3	V
Vwl	Reference voltage (White)		-0.3 ~ AVcc+0.3	V
VBL	Reference voltage (Black)		-0.3 ~ AVcc+0.3	V
VML	Reference voltage (Middle)		-0.3 ~ AVcc+0.3	V
VAIN	Analog Input voltage		-0.3 ~ AVcc+0.3	V
Tstg	Storage temperature range		-65 ~ 150	°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter				- Unit		
Symbol	Falameter		Min.	Тур.	Max.	Onit	
Vcc	Supply voltage		4.5	5.0	5.5	V	
GND	GND voltage		0.0		V		
VI	Input voltage	0.0		Vcc	V		
AVcc	Analog supply voltage	4.5	5.0	5.5	V		
Agnd	Analog GND voltage (Note)			0.0		V	
VWL	Reference voltage (White)		3		AVcc	V	
VBL	Reference voltage (Black)		0.0	0.0	1.0	V	
VAIN	Analog input voltage	ASIG	VBL		Vwl	V	
Topr	Operating temperature range		-20		75	°C	

Note: Connect AGND with GND externally.

Currente e l	Deverse	4.4.4	Test see ditions		Limits		1.1.4.14
Symbol	Parame	ter	Test conditions	Min.	Тур.	Max.	- Unit
Vih	"H" Input voltage	SYSCK, SRDY, DAK,		2.0			V
VIL	"L" Input voltage	CS, RD, WR, A0~A3, D0~D7				0.8	V
VT+	Positive-going threshold voltage					2.4	V
VT-	Negative-going threshold voltage	RESET		0.6			V
Vн	Hysteresis voltage				0.2		V
Voh	"H" output voltage	D0~D7	IOH=-12mA	Vcc-0.8			V
Vol	"L" output voltage	D0~D7	IOL=12mA			0.55	V
Voh	"H" output voltage	DRQ, SH, CK1, CK2,	IOн=-4mA	Vcc-0.8			V
Vol	"L" output voltage	RS, PTIM, CLAMP, S/H, AGC, DSCH, STIM, SCLK, SVID	IOL=4mA			0.55	V
Іін	"H" input current	<u>SYSCK, SRDY,</u> DAK,RESET, CS,	Vcc=5.5V VI=5.5V			1.0	μA
lıL	"L" input current	RD, WR, A0~A3	Vcc=5.5V VI=0V			-1.0	μΑ
Іоzн	Off-state "H" output current	D0~D7	Vcc=5.5V VI=5.5V			5.0	μA
Iozl	Off-state "L" output current	00~01	Vcc=5.5V VI=0V			-5.0	μA
IAIN	Analog input current	ASIG (Standby)				±10	μA
RL	Reference resistance				1.0		kΩ
Sinl	A-D converter Non-linear error (Note 1)		Vcc=5.0V		±0.5	±1.0	LSB
Iccs	Quiescent supply current (Standby) (Note 2)		Vcc=5.5V VI=Vcc, GND		10	20	mA
ICCA	Quiescent supply current (Active state) (Note 2)		Vcc=5.5V VI=Vcc, GND		15	40	mA
Icc	Dynamic supply current	SYSCK=8MHz	Vcc=5.5V VI=Vcc,GND		40		mA

ELECTRICAL CHARACTERISTICS (Ta = -20 ~ 75°C, Vcc = 5 V ± 10%, unless otherwise noted)

Note 1: The A-D converter has a 5-bit resolution. 2: Current flowing in the reference resistor in the A-D converter is not included.

C: unally a l		Devenueter		Test senditions		Limits		11
Symbol		Parameter		Test conditions	Min.	Тур.	Max.	- Unit
tc(SYS)		Period				125		ns
tw+(SYS)		High-level pulse wid	dth			62.5		ns
tw–(SYS)	System clock	Low-level pulse wid	lth			62.5		ns
tr(SYS)		Rise time					20	ns
tf(SYS)		Fall time					20	ns
tw(RD)		Pulse width			100			ns
$tsu(\overline{CS}-\overline{RD})$		Setup time	CS		20			ns
tsu(A-RD)	Read pulse	Setup time	A0~A3		20			ns
$tsu(\overline{DAK}-\overline{RD})$		Setup time	DAK		20			ns
$th(\overline{RD}-\overline{CS})$		Hold time	CS		10			ns
th(RD-A)		Hold time	A0~A3		10			ns
th(RD-DAK)		Hold time	DAK		10			ns
tw(WR)		Pulse width			100			ns
$tsu(\overline{CS}-\overline{WR})$		Setup time	CS		20			ns
tsu(A-WR)		Setup time	A0~A3		20			ns
tsu(D-WR)	Write pulse	Setup time	D0~D7		50			ns
$th(\overline{WR}-\overline{CS})$		Hold time	CS		20			ns
th(WR-A)		Hold time	A0~A3		10			ns
th(WR-D)		Hold time	D0~D7		0			ns
th(STIM-SRDY)	STIM	Hold time	SRDY		0			ns

TIMING REQUIREMENTS (Ta = $-20 \sim 75^{\circ}$ C, Vcc = 5 V ± 10%, unless otherwise noted)

Sumbol	Parameter	Test conditions			Unit	
Symbol	Faldmeter	Test conditions	Min.	Тур.	Max.	Unit
tPZL(RD-D)	Output enable time to low-level and high-level (RD-D)				75	ns
tPZH(RD-D)		CL=150pF			75	110
tPLZ(RD-D)	Output disable time from low-level and high-level (RD-D)	CL=150pi	10		50	ns
tPHZ(RD-D)			10		Max. 75 50 50	110
tPHL(RD-DRQ)	High-level to low-level output propagation time (RD-DRQ)	CL=50pF			50	ns

SWITCHING CHARACTERISTICS (Ta = $-20 \sim 75^{\circ}$ C, Vcc = 5 V ± 10%, unless otherwise noted)

Test Circuit

SW1	SW2
Open	Open
Closed	Open
Open	Closed
Closed	Open
Open	Closed
	Open Closed Open Closed

(1)The pulse generator (PG) has the following characteristics (10%~90%) :

(2) The capacitance CL = 150pF includes stray wiring capacitance and the probe input capacitance.

System Clock

MPU Interface (1) Read timing (M66332 \rightarrow MPU)

(2) Write timing (MPU \rightarrow M66332)

DMA Timing Read timing (M66332 \rightarrow System bus)

CODEC Interface

FLOWCHART Read Operation (Sensor: CCD)

Uniformity correction data creation, transmission (sensor: CIS)

Read operation (sensor: CIS)

