MITSUBISHI (DIGITAL ASSP)

8-BIT LED DRIVER WITH SHIFTREGISTER AND LATCHED 3-STATE OUTPUTS

DESCRIPTION

M66312 is a LED array driver having a 8-bit serial input and parallel output shiftregister function with 3-state output latch.

This product guarantees the output electric current of 16mA which is sufficient for LED drive, capable of flowing 8 bits continuously at the same time, and use either of cathode common LED and anode common LED.

In addition, as this product has been designed in complete CMOS, power consumption can be greatly reduced when compared with conventional BIPOLAR or Bi-CMOS products.

FEATURES

- High output current I_{OL}=16mA, I_{OH}=-16mA
- High speed (clock frequency) : 30MH_z (typ) (C_L=50_pF, V_{CC}=5V)
- Low power dissipation : 20µW/package (max) (V_{cc}=5V, Ta=25°C, quiescent state)
- 3-state output (except serial data output)
- Wide operating temperature range : $Ta = -40 \sim +85^{\circ}C$

APPLICATION

LED array drive of PRINTER LED array drive of BUTTON TELEPHONE

MITSUBISHI (DIGITAL ASSP) M66312P/FP

8-BIT LED DRIVER WITH SHIFTREGISTER AND LATCHED 3-STATE OUTPUTS

FUNCTIONAL DESCRIPTION

As M66312 uses silicon gate CMOS process, it realizes high-speed and high-output currents sufficient for LED drive while maintaining low power consumption and allowance for high noises.

Each bit of a shiftregister consists of two flip-flops having independent clocks for shifting and latching.

As for clock input, shift clock input CKs and latch clock input CK_L are independent from each other, shift and latch operations being made when "L" changes to "H".

Serial data input A is the data input of the first-step shiftregister and the signal of A shifts shiting registers one by one when a pulse is impressed to CK_S. When A is "H", the signal of "H" shifts. When A is "L", the signal of "L" shifts.

When the pulse is impressed to $\mathsf{CK}_\mathsf{L},$ the contents of the

shifting register at that time are stored in a latching register, and they appear in the output from Q_A through Q_H are 3-state outputs.

To extend the number of bits, serial data output SQ_H is used to output the 8-bit of the shift register.

By connecting CKs and CKL, the shift register state delayed by 1 clock cycle is output at Q_A through Q_H.

When reset input \overline{R} is low, shift register and SQ_H will be reset. To reset Q_A through Q_H to low-level, CK_L must be changed from low-level to high-level after the shift register is reset by R.

When output-enable input \overline{OE} is high, Q_A through Q_H will become high impedance state, but $\ensuremath{\mathsf{SQ}}_{\ensuremath{\mathsf{H}}}$ is not changed. Even if OE is changed, shift operation is not affected.

Operatio			Input					Р	arallel d	ata outp	ut			Serial data	
		R	R CKs	CKL	A	OE	Q _A	Q _B	Qc	QD	QE	QF	Q _G	Q _H	output SQ _H
Reset	Shift t ₁	Ĺ	х	х	х	L	Q _A ⁰	Q _B ⁰	Q _c ^o	Q _D ⁰	Q _E ⁰	Q _F ⁰	Q ₀ ⁰	Q _H ⁰	L
neset	Latch t ₂	х	X	1	Х	L	L	L	L	L	L	L	L	L	L
Shift	Shift t ₁	н	1	х	Н	L	Q _A ⁰	Q _B ⁰	Q _c ⁰	Q_{p}^{0}	Q _E ⁰	Q _F ⁰	Q _G ⁰	Q _H ⁰	q _G ⁰
latch	Latch t ₂	н	Х	1	Х	L	н	q _A ⁰	q _B ⁰	q _c ⁰	q _D ⁰	q _E ⁰	Q _F ⁰	q_{G}^{0}	q _G ⁰
operation	Shift t ₁	Н	t	х	L	L	Q _A ⁰	Q _B ⁰	Q _c ⁰	Q _D ⁰	Q _E ⁰	Q _F ⁰	Q _G ⁰	Q _H ⁰	q _G ⁰
operation	Latch t ₂	н	X	t	Х	L	L	q _A ⁰	q _B ⁰	qc ⁰	q _D ⁰	q _E ⁰	q _F ⁰	q ₀ ⁰	q _G ⁰
3 st	ate	X	X	х	х	н	Z	Z	Z	Z	Z	Z	Z	Z	q _H

FUNCTION TABLE (Note: 1)

Note 1 : † : Change from low-level to high-level Q⁰ : Output state Q before CK_L changed

X : Irrelevant

qº : Contents of shift register before CKs changed

q : Contents of shift register

 t_1, t_2 : t_2 is set after t_1 is set Z : High impedance

MITSUBISHI (DIGITAL ASSP) M66312P/FP

8-BIT LED DRIVER WITH SHIFTREGISTER AND LATCHED 3-STATE OUTPUTS

ABSOLUTE MAXIMUM RATINGS (Ta=-40~+85°C, unless otherwise noted)

Symbol	Parameter		Conditions	Ratings	Unit	
Vcc	Supply voltage			-0.5~+7.0	V	
V,	Input voltage			$-0.5 \sim V_{cc} + 0.5$	V	
Vo	Output voltage			$-0.5 \sim V_{cc} + 0.5$	v	
1	Input protection diode current		$V_1 < 0V$	-20		
I _{IK} Input protection diode current			$V_{I} > V_{CC}$	20	mA	
1	I _{OK} Output parasitic diode current		$V_0 < 0V$	-20		
юк			$V_{O} > V_{CC}$	20	- mA	
lo	Output current per output pin	$Q_A \sim Q_H$		±35		
		SQH		±25	- mA	
Icc	Supply/GND current		V _{CC} , GND	±132	mA	
Pd	Power dissipation		(Note 2)	500	mW	
Tstg	Storage temperature range			-65~+150	Ĵ	

Note 2 : M66312FP; $T_a = -40 \sim +70$ °C, $T_a = 70 \sim 85$ °C are derated at -6mW/°C.

RECOMMENDED OPERATING CONDITIONS (Ta=-40~+85°C, unless otherwise noted)

Symbol	Parameter			Limits	11-11	
Gymbol	Faraneter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	v	
Vi	Input voltage	0		V _{cc}	V	
Vo	Output voltage		0		V _{cc}	V
Topr	Operating temperature range		40		+85	ĩ
tr, tf Input ris	Input rising and falling time	V _{cc} =4.5V	0		500	
u, u	mput rising and taning time	$V_{\rm CC}=5.5V$	0		400	ns

ELECTRICAL CHARACTERISTICS (V_{cc}=4.5~5.5V, unless otherwise noted)

Symbol	Parameter	Test condition		Ta=25℃		$T_a = -40$	Unit		
				Min	Тур	Max	Min	Max	
VIH	High-level input voltage	$V_{O} = 0.1V, V_{CC} = 0.1V$ $ I_{O} = 20\mu A$	0.70×V _{cc}			0.70×V _{cc}		v	
VIL	Low-level input voltage	$V_0 = 0.1V, V_{CC} = 0.1V$ $ I_0 = 20\mu A$				0.30×V _{cc}		0.30×V _{cc}	v
V _{OH}	High-level output voltage	$V_{I} = V_{IH}, V_{IL}$	I _{он} =-20µА	V _{cc} -0.1	·····		V _{cc} -0,1		
⊻он	Q _A ~Q _H	V _{cc} =4.5V	I _{он} =-16mA	3.70*			3.55*		v
V _{OH}	High-level output voltage	$V_1 = V_{IH}, V_{IL}$	I _{он} =-20µА	V _{cc} -0.1			V _{cc} -0.1		
∙он	SQ _H	V _{cc} =4.5V	I _{OH} =-4mA	4.0			3.9		v
VOL	Low-level output voltage	$V_i = V_{iH}, \ V_{iL}$	i _{ol} =20μA			0.1		0.1	
VOL	Q _A ~Q _H	$V_{\rm CC}=4.5V$	I _{OL} =16mA			0.7*		0.85*	v
VOL	Low-level output voltage	$V_i = V_{iH}, V_{iL}$	I _{OL} =20µА			0.1		0.1	
VOL	SQH	$V_{cc}=4.5V$	I _{OL} = 4 mA			0.4		0.5	v
Iн	High-level input current	$V_1 = V_{CC}, V_{CC} = 5.5V$				0.1		1.0	μA
h _{it}	Low-level input current	V _I ==GND, V _{CC} =5.5V				0.1		-1.0	μA
l _{ozн}	Off state high-level output current $Q_A \sim Q_H$	VI=VIH, VIL	Vo=Vcc			1.0		10.0	μA
lozl	Off state low-level output current $Q_A \sim Q_H$	V _{cc} =5.5V	Vo=GND			1.0		-10.0	μA
lcc	Quiescent supply current	$V_1 = V_{CC}$, GND, $V_{CC} = 5.5V$				4.0		40.0	μA

* : Limits of single PIN operating state

MITSUBISHI (DIGITAL ASSP) M66312P/FP

8-BIT LED DRIVER WITH SHIFTREGISTER AND LATCHED 3-STATE OUTPUTS

SWITCHING CHARACTERISTICS (V_{cc}= 5 V)

Symbol	Parameter	Test conditions		T _a =25℃	2	T _a =-40~+85℃		Unit
			Min	Тур	Max	Min	Max	
fmax	Maximum clock frequency	C _L =50pF	15			12		MHz
t _{₽LH}	Low-level to high-level and high-level to low-level				70	1	88	ns
t _{PHL}	output propagation time CKs-SQ _H	C _L =15pF			70		88	ns
t _{PHL}	High-level to low-level output propagation time $\overline{R}\text{-}SQ_{H}$	(Note 3)			60		76	ns
t _{PLH}	Low-level to high-level and high-level to low-level	C _L ≕50pF			60	1	76	ns
t _{PHL}	output propagation time $CK_L-Q_A \sim Q_H$	(Note 3)			60		76	ns
t _{PLZ}	Output disable time from low-level and high-level	C _L =5pF			50		64	ns
t _{PHZ}		(Note 3)			50		64	ns
t _{PZL}	Output enable time to low-level and high-level	CL=50pF			56	1	70	ns
t _{PZH}		(Note 3)			56	1	70	ns

TIMING REQUIREMENTS (V_{cc}=5 V)

Symbol		Test conditions						
	Parameter		T _a =25℃			$T_a = -40$	Unit	
			Min	Тур	Max	Min	Max	
tw	CK_s , CK_L , \overline{R} pulse width		32			40		ns
t _{su}	A setup time with respect to CK _S		40			50		ns
tsu	CKs setup time with respect to CKL		40			50		ns
t _h	A hold time with respect to CKs	-	10			10	1	ns
trec	R recovery time with respect to CKs	1	20			26		ns

Note 3 : Test Circuit

(1) The pulse generator (PG) has the following characteristics (10%~90%) : tr =6ns, tf=6ns

(2) The capacitance C_L includes stray wiring capacitance and the probe input capacitance.

MITSUBISHI (DIGITAL ASSP) M66312P/FP

8-BIT LED DRIVER WITH SHIFTREGISTER AND LATCHED 3-STATE OUTPUTS

TIMING DIAGRAM