

5120 × 8-BIT × 2 LINE MEMORY (FIFO)

### DESCRIPTION

The M66257FP is a high-speed line memory with a FIFO (First In First Out) structure of 5120-word  $\times$  8-bit double configuration which uses high-performance silicon gate CMOS process technology.

It allows simultaneous output of 1-line delay data and 2-line delay data, and is most suitable for data correction over multiple lines.

It has separate clock, enable and reset signals for write and read, and is most suitable as a buffer memory between devices with different data processing throughput.

#### FEATURES

- Memory configuration of 5120 words × 8 bits × 2 (dynamic memory)
- High-speed cycle ...... 25ns (Min.)
- High-speed access ...... 18ns (Max.)
- Output hold ...... 3ns (Min.)
- Fully independent, asynchronous write and read operations
- Output ......3 states
- Q00 to Q07 ..... 1-line delay
- Q10 to Q17 ..... 2-line delay

### APPLICATION

Digital photocopiers, high-speed facsimile, laser beam printers.







MITSUBISHI (DIGITAL ASSP)

 $5120 \times 8$ -BIT  $\times 2$  LINE MEMORY (FIFO)

### FUNCTION

When write enable input  $\overline{\text{WE}}$  is "L", the contents of data inputs D<sub>0</sub> to D<sub>7</sub> are written into 1-line delay data only memory in synchronization with rise edge of write clock input WCK. At this time, the write address counter of 1-line delay data only memory is also incremented simultaneously.

The write functions given below are also performed in synchronization with rise edge of WCK.

When  $\overline{\text{WE}}$  is "H", a write operation to 1-line delay data only memory is inhibited and the write address counter of 1-line delay data only memory is stopped.

When write reset input WRES is "L", the write address counter of 1-line delay data only memory is initialized.

When read enable input  $\overline{RE}$  is "L", the contents of 1-line delay data only memory are output to data outputs Q00 to Q07 and those of 2-line delay data only memory to data outputs Q10 to Q17 in synchronization with the rise of read clock input RCK. At this time, the read address counters of 1-line and 2-line delay data only memories is also incremented simultaneously.

Moreover, data of Q00 to Q07 are written into 2-line delay data only memory in synchronization with rise edge of RCK. At this time, the write address of 2-line delay data only memory is incremented.

The read functions given below are also performed in synchronization with rise edge of RCK.

When RE is "H", a read operation from both of 1-line delay data only memory and 2-line delay data only memory is inhibited and the read address counter of each memory is stopped. The outputs of Q00 to Q07 and Q10 to Q17 are in the high impedance state.

Moreover, a write operation to 2-line delay data only memory is inhibited and the write address counter of 2-line delay data only memory is stopped.

When read reset input RRES is "L", the read address counter of 1-line delay data only memory, and the write address counter and read address counter of 2-line delay data only memory are initialized.



### $5120 \times 8$ -BIT $\times 2$ LINE MEMORY (FIFO)

### **ABSOLUTE MAXIMUM RATINGS** (Ta = 0 ~ 70°C, unless otherwise noted)

| Symbol | Parameter                 | Conditions               | Ratings          | Unit |
|--------|---------------------------|--------------------------|------------------|------|
| Vcc    | Supply voltage            |                          | -0.5 ~ +7.0      | V    |
| Vi     | Input voltage             | A value based on GND pin | -0.5 ~ Vcc + 0.5 | V    |
| Vo     | Output voltage            |                          | -0.5 ~ Vcc + 0.5 | V    |
| Pd     | Maximum power dissipation | Ta = 25°C                | 660              | mW   |
| Tstg   | Storage temperature       |                          | -65 ~ 150        | °C   |

### **RECOMMENDED OPERATING CONDITIONS**

| Symbol | Parameter                     |      | Unit |      |      |  |
|--------|-------------------------------|------|------|------|------|--|
| Symbol | Falameter                     | Min. | Тур. | Max. | Onit |  |
| Vcc    | Supply voltage                | 4.5  | 5    | 5.5  | V    |  |
| GND    | Supply voltage                |      | 0    |      | V    |  |
| Topr   | Operating ambient temperature | 0    |      | 70   | °C   |  |

# **ELECTRICAL CHARACTERISTICS** (Ta = 0 ~ 70°C, Vcc = 5V $\pm$ 10%, GND = 0V, unless otherwise noted)

| Symbol | Parameter                               | Ta                                              | at acaditiona                                                             |         | Limits |      | Unit |  |
|--------|-----------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|---------|--------|------|------|--|
| Symbol | Parameter                               | Test conditions                                 |                                                                           | Min.    | Тур.   | Max. | Unit |  |
| Viн    | "H" input voltage                       |                                                 |                                                                           | 2.0     |        |      | V    |  |
| VIL    | "L" input voltage                       |                                                 |                                                                           |         |        | 0.8  | V    |  |
| Vон    | "H" output voltage                      | IOH = -4mA                                      |                                                                           | Vcc-0.8 |        |      | V    |  |
| Vol    | "L" output voltage                      | IOL = 4mA                                       |                                                                           |         |        | 0.55 | V    |  |
| Іін    | "H" input current                       | VI = VCC                                        | $\overline{\frac{WE}{WRES}}, WCK, \overline{RE}, RRES, RCK, D_0 \sim D_7$ |         |        | 1.0  | μA   |  |
| lıL.   | "L" input current                       | VI = GND                                        | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                  |         |        | -1.0 | μA   |  |
| lozh   | Off state "H" output current            | Vo = Vcc                                        |                                                                           |         |        | 5.0  | μA   |  |
| IOZL   | Off state "L" output current            | Vo = GND                                        |                                                                           |         |        | -5.0 | μA   |  |
| Icc    | Operating mean current dissipa-<br>tion | VI = VCC, GND, Output open<br>twCK, tRCK = 25ns |                                                                           |         |        | 120  | mA   |  |
| Сі     | Input capacitance                       | f = 1MHz                                        |                                                                           |         |        | 10   | pF   |  |
| Со     | Off state output capacitance            | f = 1MHz                                        |                                                                           |         |        | 15   | pF   |  |



### $5120 \times 8$ -BIT $\times 2$ LINE MEMORY (FIFO)

### SWITCHING CHARACTERISTICS (Ta = 0 ~ 70°C, Vcc = 5V ± 10%, GND = 0V, unless otherwise noted)

| Symbol | Parameter           | Limits |      |      | - Unit |
|--------|---------------------|--------|------|------|--------|
|        |                     | Min.   | Тур. | Max. | Unit   |
| tAC    | Access time         |        |      | 18   | ns     |
| tOH    | Output hold time    | 3      |      |      | ns     |
| tOEN   | Output enable time  | 3      |      | 18   | ns     |
| tODIS  | Output disable time | 3      |      | 18   | ns     |

#### TIMING CONDITIONS (Ta = 0 ~ 70°C, Vcc = 5V ± 10%, GND = 0V, unless otherwise noted)

| Symbol        | Parameter                                | Limits |      |      | Unit |
|---------------|------------------------------------------|--------|------|------|------|
|               | Parameter                                | Min.   | Тур. | Max. | Unit |
| tWCK          | Write clock (WCK) cycle                  | 25     |      |      | ns   |
| tWCKH         | Write clock (WCK) "H" pulse width        | 11     |      |      | ns   |
| tWCKL         | Write clock (WCK) "L" pulse width        | 11     |      |      | ns   |
| tRCK          | Read clock (RCK) cycle                   | 25     |      |      | ns   |
| <b>t</b> RCKH | Read clock (RCK) "H" pulse width         | 11     |      |      | ns   |
| <b>t</b> RCKL | Read clock (RCK) "L" pulse width         | 11     |      |      | ns   |
| tDS           | Input data setup time to WCK             | 7      |      |      | ns   |
| tDH           | Input data hold time to WCK              | 3      |      |      | ns   |
| tRESS         | Reset setup time to WCK or RCK           | 7      |      |      | ns   |
| tRESH         | Reset hold time to WCK or RCK            | 3      |      |      | ns   |
| tNRESS        | Reset nonselect setup time to WCK or RCK | 7      |      |      | ns   |
| tNRESH        | Reset nonselect hold time to WCK or RCK  | 3      |      |      | ns   |
| tWES          | WE setup time to WCK                     | 7      |      |      | ns   |
| tWEH          | WE hold time to WCK                      | 3      |      |      | ns   |
| tNWES         | WE nonselect setup time to WCK           | 7      |      |      | ns   |
| tNWEH         | WE nonselect hold time to WCK            | 3      |      |      | ns   |
| tRES          | RE setup time to RCK                     | 7      |      |      | ns   |
| tREH          | RE hold time to RCK                      | 3      |      |      | ns   |
| tNRES         | RE nonselect setup time to RCK           | 7      |      |      | ns   |
| <b>t</b> NREH | RE nonselect hold time to RCK            | 3      |      |      | ns   |
| tr, tf        | Input pulse rise/fall time               |        |      | 20   | ns   |
| tн            | Data hold time (Note 1)                  |        |      | 20   | ms   |

Note 1: For 1-line access, the following should be satisfied: <u>WE</u> "H" level period < 20ms – 5120 twck – <u>WRES</u> "L" level period <u>RE</u> "H" level period < 20ms – 5120 trck – <u>RRES</u> "L" level period 2: Reset the IC after power is turned on.



### **TEST CIRCUIT**





| Input pulse level : 0 ~ 3V                                                                            |          |
|-------------------------------------------------------------------------------------------------------|----------|
|                                                                                                       | Doro     |
| Input pulse rise/fall time : 3ns                                                                      | Parar    |
| Decision voltage input : 1.3V                                                                         | tODIS(LZ |
| Decision voltage output : 1.3V (However, toDIS(LZ) is 10% of output amplitude and toDIS(HZ) is 90% of | tODIS(H2 |
| that for decision).                                                                                   | 10511/71 |

The load capacitance CL includes the floating capacitance of connection and the input capacitance of probe.

| Parameter | SW1    | SW2    |
|-----------|--------|--------|
| tODIS(LZ) | Closed | Open   |
| tODIS(HZ) | Open   | Closed |
| tOEN(ZL)  | Closed | Open   |
| tOEN(ZH)  | Open   | Closed |

### **tODIS/TOEN TEST CONDITION**





# **OPERATING TIMING**

Write cycle



• Write reset cycle





#### Read cycle



• Read reset cycle





### • Note at WCK stop



 $\overline{\mathsf{WRES}} = \mathsf{``H''}$ 

Input data Dn of n cycle is read at the rising edge after WCK of n cycle. Writing operation starts in the "L" period of WCK of n+1 cycle and ends at the rising edge after n+1 cycle.

To stop reading write data at n cycle, input WCK for up to the rising edge of n+1 cycle.

When the cycle next to n cycle is a disable cycle, input of WCK for a cycle is required after a disable cycle as well.



• Shortest read of data "n" written in cycle n

Cycle n-1 on read side should be started after end of cycle n+1 on write side

When the start of cycle n-1 on read side is earlier than the end of cycle n+1 on write side, output  $Q_n$  of cycle n becomes invalid. In the figure shown below, the read of cycle n-1 is invalid.



### • Longest read of data "n" written in cycle n: 1-line delay

Cycle n <1>\* on read side should be started when cycle n <2>\* on write is started Output Qn of n cycle <1>\* can be read until the start of reading side n cycle <1> and the start of writing side n cycle <2>\* overlap each other.





# APPLICATION EXAMPLE

Laplacian Filter Circuit for Correction of Resolution in the Secondary Scanning Direction.



