MITSUBISHI (DIGITAL ASSP)

8192 × 10-BIT LINE MEMORY (FIFO)

DESCRIPTION

The M66255FP is a high-speed line memory with a FIFO (First In First Out) structure of 8192-word \times 10-bit configuration which uses high-performance silicon gate CMOS process technology.

It has separate clock, enable and reset signals for write and read, and is most suitable as a buffer memory between devices with different data processing throughput.

FEATURES

- Memory configuration of 8192 words \times 10 bits (dynamic memory)
- High-speed cycle 30ns (Min.)
- High-speed access 25ns (Max.)
- Output hold 5ns (Min.)
- Fully independent, asynchronous write and read operations
- Variable length delay bit

APPLICATION

Digital photocopiers, high-speed facsimile, laser beam printers.

 8192×10 -BIT LINE MEMORY (FIFO)

FUNCTION

When write enable input $\overline{\mathsf{WE}}$ is "L", the contents of data inputs D₀ to D₉ are written into memory in synchronization with rise edge of write clock input WCK. At this time, the write address counter is also incremented simultaneously.

The write functions given below are also performed in synchronization with rise edge of WCK.

When $\overline{\text{WE}}$ is "H", a write operation to memory is inhibited and the write address counter is stopped.

When write reset input $\overline{\mathsf{WRES}}$ is "L", the write address counter is initialized.

When read enable input $\overline{\text{RE}}$ is "L", the contents of memory are output to data outputs Q0 to Q9 in synchronization with rise edge of read clock input RCK. At this time, the read address counter is also incremented simultaneously.

The read functions given below are also performed in synchronization with rise edge of RCK.

When RE is "H", a read operation from memory is inhibited and the read address counter is stopped. The outputs are in the high impedance state.

When read reset input $\overline{\text{RRES}}$ is "L", the read address counter is initialized.

ABSOLUTE MAXIMUM RATINGS (Ta = 0 ~ 70°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5 ~ +7.0	V
Vi	Input voltage	A value based on GND pin	-0.5 ~ Vcc + 0.5	V
Vo	Output voltage		-0.5 ~ Vcc + 0.5	V
Pd	Maximum power dissipation	Ta = 25°C	825 (Note 1)	mW
Tstg	Storage temperature		-65 ~ 150	°C

Note 1: Ta \geq 40°C are derated at –9.7mW/°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Symbol Parameter		Unit		
Symbol		Min.	Тур.	Max.	Unit
Vcc	Supply voltage	4.5	5	5.5	V
GND	Supply voltage		0		V
Topr	Operating ambient temperature	0		70	°C

ELECTRICAL CHARACTERISTICS (Ta = 0 ~ 70°C, Vcc = 5V \pm 10%, GND = 0V)

Cumbol	Parameter	Test conditions		Limits			Linit
Symbol	Parameter			Min.	Тур.	Max.	Unit
Viн	"H" input voltage			2.0			V
VIL	"L" input voltage					0.8	V
Voh	"H" output voltage	IOH = -4mA		Vcc-0.8			V
Vol	"L" output voltage	IOL = 4mA				0.55	V
Іін	"H" input current	VI = VCC	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			1.0	μA
lıL.	"L" input current	VI = GND	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			-1.0	μA
Іоzн	Off state "H" output current	Vo = Vcc				5.0	μA
IOZL	Off state "L" output current	Vo = GND				-5.0	μA
Icc	Operating mean current dissipa- tion	VI = Vcc, GND, Output open twcк, trcк = 30ns				150	mA
Сі	Input capacitance	f = 1MHz				10	pF
Со	Off state output capacitance	f = 1MHz				15	pF

8192 × 10-BIT LINE MEMORY (FIFO)

SWITCHING CHARACTERISTICS (Ta = 0 ~ 70°C, Vcc = 5V \pm 10%, GND = 0V)

Symbol	Deromotor	Limits			Unit
Symbol	Parameter	Min.	Тур.	Max.	Unit
tAC	Access time			25	ns
tOH	Output hold time	5			ns
tOEN	Output enable time	5		25	ns
tODIS	Output disable time	5		25	ns

TIMING CONDITIONS (Ta = 0 ~ 70°C, Vcc = 5V \pm 10%, GND = 0V, unless otherwise noted)

Currente e l	Decomptor		Limits		
Symbol	Parameter		Тур.	Max.	Unit
tWCK	Write clock (WCK) cycle	30			ns
twcкн	Write clock (WCK) "H" pulse width	12			ns
tWCKL	Write clock (WCK) "L" pulse width	12			ns
t RCK	Read clock (RCK) cycle	30			ns
t RCKH	Read clock (RCK) "H" pulse width	12			ns
t RCKL	Read clock (RCK) "L" pulse width	12			ns
tDS	Input data setup time to WCK	5			ns
tDH	Input data hold time to WCK	5			ns
tRESS	Reset setup time to WCK or RCK	5			ns
tRESH	Reset hold time to WCK or RCK	5			ns
tNRESS	Reset nonselect setup time to WCK or RCK	5			ns
tNRESH	Reset nonselect hold time to WCK or RCK	5			ns
tWES	WE setup time to WCK	5			ns
tWEH	WE hold time to WCK	5			ns
tNWES	WE nonselect setup time to WCK	5			ns
tNWEH	WE nonselect hold time to WCK	5			ns
tRES	RE setup time to RCK	5			ns
tREH	RE hold time to RCK	5			ns
tNRES	RE nonselect setup time to RCK	5			ns
t NREH	RE nonselect hold time to RCK	5			ns
tr, tf	Input pulse rise/fall time			20	ns
tн	Data hold time (Note 1)			20	ms

Notes 1: For 1-line access, the following should be satisfied: <u>WE</u> "H" level period ≤ 20ms – 8192 twck – <u>WRES</u> "L" level period <u>RE</u> "H" level period ≤ 20ms – 8192 trck – <u>RRES</u> "L" level period

2: Perform reset operation after turning on power supply.

$8192\times10\text{-BIT}$ LINE MEMORY (FIFO)

TEST CIRCUIT

Input pulse level : 0 ~ 3V	Parameter	S۱
Input pulse rise/fall time : 3ns	Faranielei	31
Decision voltage input : 1.3V	tODIS(LZ)	Clo
Decision voltage output : 1.3V (However, tODIS(LZ) is 10% of output amplitude and tODIS(HZ) is 90% of	tODIS(HZ)	Op
that for decision).	tornural	Clo
The load capacitance CL includes the floating capacitance of connection and the input capacitance of	toen(zl)	

The load capacitance CL includes the floating capacitance of connection and the input capacitance of probe.

Parameter	SW1	SW2
tODIS(LZ)	Closed	Open
tODIS(HZ)	Open	Closed
toen(ZL)	Closed	Open
toen(ZH)	Open	Closed

tODIS/TOEN TEST CONDITION

 $8192\times10\text{-BIT}$ LINE MEMORY (FIFO)

OPERATING TIMING

• Write cycle

• Write reset cycle

 8192×10 -BIT LINE MEMORY (FIFO)

• Matters that needs attention when WCK stops

 $\overline{\text{WRES}} = \text{``H''}$

Input data of n cycle is read at the rising edge after WCK of n cycle and writing operation starts in the WCK low-level period of n+1 cycle. The writing operation is complete at the falling edge after n+1 cycle.

To stop reading write data at n cycle, enter WCK before the rising edge after n+1 cycle.

When the cycle next to n cycle is a disable cycle, WCK for a cycle requires to be entered after the disable cycle as well.

 $8192\times10\text{-BIT}$ LINE MEMORY (FIFO)

Read cycle

• Read reset cycle

VARIABLE LENGTH DELAY BITS

• 1-line (8192 bits) delay

A write input data is written into memory at the second rise edge of WCK in the cycle, and a read output data is output from memory at the first rise edge of RCK in the cycle, so that 1-line delay can be made easily.

N-bit delay bit

(Making a reset at a cycle corresponding to delay length)

8192 × 10-BIT LINE MEMORY (FIFO)

(Sliding WRES and RRES at a cycle corresponding to delay length)

N-bit delay 3

(Disabling RE at a cycle corresponding to delay length)

• Shortest read of data "n" written in cycle n

Cycle n–1 on read side should be started after end of cycle n+1 on write side

When the start of cycle n-1 on read side is earlier than the end of cycle n+1 on write side, output Q_n of cycle n becomes invalid. In the figure shown below, the read of cycle n-1 is invalid.

• Longest read of data "n" written in cycle n: 1-line delay

Cycle n <1>* on read side should be started when cycle n <2>* on write is started Output Qn of n cycle <1>* can be read until the start of reading side n cycle <1>* and the start of writing side n cycle <2>* overlap each other.

APPLICATION EXAMPLE

Laplacian Filter Circuit for Correction of Resolution in the Secondary Scanning Direction.

