MITSUBISHI (DIGITAL ASSP)

1152 x 8-BIT LINE MEMORY (FIFO)

DESCRIPTION

The M66252P/FP is a high-speed line memory with a FIFO (First In First Out) structure of 1152-word \times 8-bit configuration which uses high-performance silicon gate CMOS process technology.

It has separate clock, enable and reset signals for write and read and is most suitable as a buffer memory between devices with different data processing throughput.

FEATURES

- Memory construction
- 1152words x 8bits (dynamic memory)
- High-speed cycle 50ns (min.)
- Fully independent, asynchronous write and read operations
- Variable-length delay bit

APPLICATION

Digital photocopiers, high-speed facsimiles, laser beam printers.

1152 x 8-BIT LINE MEMORY (FIFO)

FUNCTION

When the status of write enable input \overline{WE} is "L," data on D₀ thru D7 are written on the memory synchronously with write clock input WCK rise edges. At this time, write address counter executes counting.

The following write-related operations are also performed synchronously with WCK rise edges.

When WE is "H," writing on memory is inhibited, and write address counter stops counting.

When write reset input WRES is "L," write address counter is initialized.

When read enable input RE is "L," data on memory are output to Q0 thru Q7 synchronously with read clock input RCK rise edges. At this time, read address counter executes counting.

The following read-related operations are also performed synchronously with RCK rise edges.

When RE is "H," reading from memory is inhibited, and read address counter stops counting. The status of Q0 thru Q7 becomes high-impedance.

When read reset input RRES is "L," read address counter is initialized.

ABSOLUTE MAXIMUM RATINGS (Ta = -20 ~ 70°C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.5 ~ +7.0	V
Vi	Input voltage	Reference pin: GND	-0.5 ~ Vcc + 0.5	V
Vo	Output voltage		-0.5 ~ Vcc + 0.5	V
Pd	Power dissipation	Ta = 25°C	550 (Note 1)	mW
Tstg	Storage temperature		-65 ~ 150	°C

Note 1: Ta \geq 62°C are derated at -8.8mW/°C (24P4Y) Ta \geq 51°C are derated at -7.5mW/°C (24P2W)

RECOMMENDED OPERATIONAL CONDITIONS

Symbol	Parameter		Unit		
		Min.	Тур.	Max.	Unit
Vcc	Supply voltage	4.5	5	5.5	V
GND	Supply voltage		0		V
Topr	Ambient temperature	-20		70	°C

ELECTRICAL CHARACTERISTICS (Ta = -20 ~ 70°C, Vcc = 5V±10%, GND = 0V)

Sympol	Devenuetor	Test conditions			1.1		
Symbol	Parameter			Min.	Тур.	Max.	Unit
Vih	"H" input voltage			2.0			V
VIL	"L" input voltage					0.8	V
Voh	"H" output voltage	ЮН = -4m	ηA	Vcc - 0.8			V
Vol	"L" output voltage	IOL = 4mA				0.55	V
Іін	"H" input current	VI = VCC	WE, WRES, WCK, RE, RRES, RCK D0~D7			1.0	μΑ
lıL.	"L" input current	VI = GND	WE, WRES, WCK, RE, RRES, RCK D0~D7			-1.0	μΑ
Іоzн	"H" output current under "off" condition	Vo = Vcc				5.0	μA
Iozl	"L" output current under "off" condition	Vo = GND				-5.0	μA
Icc	Average supply current during operation	VI = VIH, VIL, Outputs are open twck, trck = 100ns				100	mA
Сі	Input capacitance	f = 1MHz				10	pF
Со	Output capacitance under "off" condition	f = 1MHz				15	pF

1152 x 8-BIT LINE MEMORY (FIFO)

SWITCHING CHARACTERISTICS (Ta = $-20 \sim 70^{\circ}$ C, Vcc = $5V\pm10\%$, GND = 0V)

Symbol	Parameter		- Unit		
		Min.	Тур.	Max.	Unit
tAC	Access time			40	ns
toн	Output hold time	5			ns
tOEN	Output enable time	5		40	ns
todis	Output disable time	5		40	ns

TIMING CHARACTERISTICS (Ta = -20 ~ 70°C, Vcc = 5V±10%, GND = 0V)

Symbol	Deremeter		Limits			
Symbol	Parameter	Min.	Тур.	Max.	Unit	
tWCK	Write clock (WCK) cycle time	50			ns	
twcкн	Write clock (WCK) "H" pulse width	25			ns	
tWCKL	Write clock (WCK) "L" pulse width	25			ns	
tRCK	Read clock (RCK) cycle time	50			ns	
t RCKH	Read clock (RCK) "H" pulse width	25			ns	
t RCKL	Read clock (RCK) "L" pulse width	25			ns	
tDS	Input data setup time (in response to WCK)	15			ns	
tDH	Input data hold time (in response to WCK)	5			ns	
tRESS	Reset setup time (in response to WCK and RCK)	15			ns	
tRESH	Reset hold time (in response to WCK and RCK)	5			ns	
tNRESS	Reset non-select setup time (in response to WCK and RCK)	15			ns	
tNRESH	Reset non-select hold time (in response to WCK and RCK)	5			ns	
tWES	WE setup time (in response to WCK)	15			ns	
tWEH	WE hold time (in response to WCK)	5			ns	
tNWES	WE non-select setup time (in response to WCK)	15			ns	
t NWEH	WE non-select hold time (in response to WCK)	5			ns	
tRES	RE setup time (in response to RCK)	15			ns	
tREH	RE hold time (in response to RCK)	5			ns	
tNRES	RE non-select setup time (in response to RCK)	15			ns	
tNREH	RE non-select hold time (in response to RCK)	5			ns	
tr, tf	Input pulse rise time and fall time			35	ns	
tн	Data hold time (Note 1)			20	ms	

Note 1. The following conditions should be met for each line access: $\frac{WE}{WE} "H" level period \le 20ms - 1152 \cdot tvck - WRES "L" level period$ $RE "H" level period \ge 20ms - 1152 \cdot trck - RRES "L" level period$ 2. Perform reset operation after turning on power supply.

1152 x 8-BIT LINE MEMORY (FIFO)

TEST CIRCUIT

Load capacitance CL includes floating capacitance and probe input capacitance.

- 3V RCK 1.3 2 - GND -- 3V RE --- GND tODIS(HZ) tOEN(ZH) - Vон 90% Qn 1.3V tODIS(LZ) tOEN(ZL) Qn 1.3V 10% VOL

TEST CONDITIONS FOR OUTPUT DISABLE TIME TODIS AND OUTPUT ENABLE TIME TOEN

TIMING CHARTS

• Write Cycles

• Write Reset Cycles

• Matters that needs attention when WCK stops

 $\overline{\text{WRES}} = \text{``H''}$

Input data of n cycle is read at the rising edge after WCK of n cycle and writing operation starts in the WCK low-level period of n+1 cycle. The writing operation is complete at the falling edge after n+1 cycle.

To stop reading write data at n cycle, enter WCK before the rising edge after n+1 cycle.

When the cycle next to n cycle is a disable cycle, WCK for a cycle requires to be entered after the disable cycle as well.

Read Cycles

Read Reset Cycles

VARIABLE-LENGTH DELAY BITS

• 1-line (1152-bit) delay

A write input data is written into memory at the second rise edge of WCK in the cycle, and a read output data is output from memory at the first rise edge of RCK in the cycle, so that 1-line delay can be made easily.

• n-bit delay 1

(Making a reset at a cycle corresponding to delay length)

• n-bit delay 2

(Sliding WRES and RRES at a cycle corresponding to delay length)

• n-bit delay 3

(Disabling RE at a cycle corresponding to delay length)

1152 x 8-BIT LINE MEMORY (FIFO)

• Shortest read of data "n" written in cycle n

Cycle n-1 on read side should be started after end of cycle n+1 on write side

When the start of cycle n-1 on read side is earlier than the end of cycle n+1 on write side, output Qn of cycle n becomes invalid. In the figure shown below, the read of cycle n-1 is invalid.

• Longest read of data "n" written in cycle n: 1-line delay

Cycle n <1>* on read side should be started when cycle n <2>* on write is started

Output Qn of n cycle <1>* can be read until the start of reading side n cycle <1>* and the start of writing side n cycle <2>* overlap each other.

1152 x 8-BIT LINE MEMORY (FIFO)

APPLICATION EXAMPLE

Laplacian Filter Circuit for Correction of Resolution in the Secondary Scanning Direction.

