MITSUBISHI (Dig./Ana. INTERFACE) M62212FP

GENERAL PURPOSE DC-DC CONVERTER

DESCRIPTION

The M62212FP is designed as a general purpose DC-DC converter.

This small 8 pin package contains many functions allowing simpler peripheral circuits and compact set design.

The output transistor is open collector and emitter follower type. This makes the control STEP-UP, STEP-DOWN and INVERTING converter.

FEATURES

Wide operation power supply voltage range...... 2.5 to 18V
Low power dissipation...... 1.3mA (typ)
High speed switching is possible. (300kHz)

•Output short protection circuit and ON/OFF control are used.

•The dead-time control and the soft-start operation are possible •Small size 8-pin SOP package.

APPLICATION

General electric products, DC-DC converter

(1/6)

MITSUBISHI (Dig./Ana. INTERFACE)

GENERAL PURPOSE DC-DC CONVERTER

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		19	V
Vo	Output voltage		19	V
lo	Output current		150	mA
Pd	Power dissipation	Ta=25°C	360	mW
K₀	Thermal derating	Ta>25°C	2.88	mW/°C
Topr	Operating temperature		-20 to +85	°C
Tstg	Storage temperature		-40 to +125	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=12V, Cosc=100pF, unless otherwise noted)

Block	Symbol	Parameter	Test conditions		Limits		
				Min.	Тур.	Max.	Unit
Std. All voltage device section device	Vcc	Range of power supply voltage		2.5		18	V
	ICC ST	Standby current	Output "OFF" status		1.3	1.8	mA
	Vref	Standard voltage	Voltage follower	1.19	1.25	1.31	V
	LINE	Line regulation	Vcc=2.5 to 18V		5	12	mV
section	Ів	Input bias current				500	nA
	Av	Open loop gain			80		dB
	Gв	Unity gain bandwidth			0.6		MHz
	Vom ⁺	Output high voltage		1.82		2.62	V
al	Vom ⁻	Output low voltage				400	mV
Error amp.	loм ⁺	Output sink current	VFB=1.86V		6		mA
ш	Іом-	Output source current	VIN=1V		-60	-30	μA
<u>io</u>	fosc	Oscillation frequency			110		kHz
Oscillator section	Vosch	Upper limit voltage of oscillation waveform			1.0		V
ğ	Voscl	Lower limit voltage of oscillation waveform			0.45		V
Sillat	losc ch	Cosc charge current			-40		μA
Ő	IOSC DIS1	Cosc discharge current 1			10		μA
0.5	VTH ON	Start-up threshold voltage	VIN=1V	2.2	2.3	2.4	V
UVLO	VTH OFF	Shut-down threshold voltage	VIN=1V		2.25		V
⊃ %	VHYS	Hysteresis	VHYS=VTHON-VTHOFF	20	50	80	mV
	Vth fb	FB threshold voltage	VIN=1V, VDTC=0.7V		1.86		V
lion	VTH DTC	Latch mode "H" threshold voltage	VIN=1V, VFB=2.11V		1.15		V
Short protection circuit	VTL DTC	Latch mode "L" threshold voltage	VIN=1V, VFB=2.11V		0.3		V
bi	Існ1	DTC charge current when start-up	Vdtc=0.7V, Vfb=2.11V		-45		μA
lt i	DIS1	DTC discharge current 1	Vdtc=0.7V, Vfb=2.11V		50		μA
ig S	Існ2	DTC charge current when stable state	VDTC=0.7V, VFB=0.7V		-10		μA
	IDIS2	DTC discharge current 2	VDTC=0.2V, VFB=2.11V		15		μA
τς	ICL	Collector output leak current	VCE=18V , VCC=18V	-1		1	μA
Output section	VSAT1	Collector output saturation voltage 1	Emitter GND, Ic=150mA, VE=0V		0.3	1.1	V
0 %	VSAT2	Collector output saturation voltage 2	Emitter follower, IE=50mA, Vc=12V		1.6		V

GENERAL PURPOSE DC-DC CONVERTER

1. APPLICATION EXAMPLE (STEP-DOWN converter with current buffer transistor)

2. FUNCTION DESCRIPTION

 Soft Start (The peripheral circuit is shown in Fig.1) When the power is turned ON, input terminal IN is at 0V level. Therefore, the FB terminal is fixed to High level. The DTC terminal goes up gradually starting from 0V due to the internal charge current and the external CDTC. When the level of DTC terminal reaches the lower limit of the triangular wave of the oscillator, PWM comparator and the output circuit go into operation causing the output voltage, "Vo" of the DC-DC converter to rise. The charge current is designed to be approximately 45µA.

MITSUBISHI (Dig./Ana. INTERFACE)

GENERAL PURPOSE DC-DC CONVERTER

2) DTC

The dead time control is set by installing a resistor between the DTC terminal and GND. However, the DTC terminal serves as the short protection circuit also. Therefore, its set up depends on whether the short protection circuit is used and not.

(When the short protection circuit is used)

At this time, the charge current for DTC is approximately $10\mu A$. Therefore, RDTC should be set to 40k to 110k .

(When the short protection circuit is not used)

At this time, the charge current for DTC is approximately $45\mu A$. Therefore, RDTC is set to 12k to 25k.

3) Short protection circuit

The short protection circuit used the timer latch system. It is determined by setting the capacity used for the soft start connected to the DTC terminal.

Fig.3 shows the short protection circuit and the timing chart for various modes.

When the power is turned on, the FB terminal goes high

(approx. 2.3V) and the DTC terminal goes low (goes up slowly from 0V). Thus, approximately 45μ A current will flow when SW1:ON and SW2:OFF. The potential, namely the potential of the FB terminal is in the amplitude of the triangular wave, SW1 will be OFF and SW2 will be ON and approximately 50μ A will flow into the DTC terminal. This discharge current will cause the DTC terminal to drop from 1.15V.

At this time, if the potential of the FB terminal goes to the control potential before the potential at the DTC terminal goes lower than 0.45V which is the lower limit value of the triangular wave and if the potential of the FB terminal is lower than the potential of the DTC terminal, then the system is activated.

When the output is shorted, the system is either activated or latched depending on whether the time for the high potential of the FB terminal reaches the potential of the control state is long or short. (For detail, see [II] and [IV] of the Mode)

There are two ways to go back to operation after the latch to shut off output. Either method can restart with soft start.

- 1. Turning ON the Vcc.
- 2. Make the FB terminal to go to the low potential of 1.86V or less. Then, it is cancel led.

[Mode Explained]

- [I] ModeActivation This is used when the FB terminal goes down to the control state potential when the DTC terminal is in up slope. In order for the activation to occur when the DTC terminal is in down slope, the FB terminal potential must go below the DTC terminal before the DTC terminal goes to 0.45V.
- [II] Mode.....Output short → Activation The system is activated if the FB terminal potential goes below the DTC terminal potential before the DTC terminal goes to 0.45V. If there is not enough time, the output is turned OFF (Latched)
- [III]Mode.....ON/OFF control → Activation This mode turns off the output by forcing the DTC terminal to go down. (The system) returns as in the case of the activation.
- [IV]Mode......Output short (Latch) The output is turned OFF when the FB terminal potential did not go down to the control state before the DTC terminal went down to 0.45V.

MITSUBISHI (Dig./Ana. INTERFACE)

GENERAL PURPOSE DC-DC CONVERTER

MITSUBISHI (Dig./Ana. INTERFACE) M62212FP

GENERAL PURPOSE DC-DC CONVERTER

CONSTANT DEFINITION

Constant		Step-down converter	Step-up converter	Inverting converter
Ton		VO+VF	Vo+VF-VIN	Vo +VF
Toff		VIN-VCE (sat)-VO	VIN-VCE (sat)	VIN-VCE (sat)
Ton+Toff		$\frac{1}{\text{fosc}}$	1 fosc	1 fosc
Toff (MIN)		TON+TOFF 1+ TON TOFF	TON+TOFF 1+ TON TOFF	TON+TOFF 1+TON TOFF
TON (MA	NX)	1 fosc -Toff	1 fosc -Toff	
D (MAX)		Ton (max) Ton+Toff	TON (MAX) TON+TOFF	TON (MAX) TON+TOFF
Cosc		1 75X10 ³ Xfosc -16X10 ⁻¹²	1 75X10 ³ Xfosc -16X10 ⁻¹²	1 75X10 ³ Xfosc -16X10 ⁻¹²
L (MIN)	(Note1)	(VIN–VCE (sat)–VO)XTON (MAX) DIO	(VIN–VCE (sat)) ² XTON (MAX) ² Xfosc 2XVOXIo	(VIN–VCE (sat)) ² XTON (MAX) ² Xfosc 2XVoXIo
R1	(Note1, 2)	$\left(\frac{VO}{VREF}-1\right)XR2$	$\left(\frac{Vo}{VREF}-1\right)XR2$	$\left(\frac{ V_0 }{V_{REF}}-1\right)XR_2$
RDTC	not use short protection	VDTC(MAX)	VDTC(MAX)	Vdtc(max)
(Note4)	use short protection	VDTC(MAX) ICH2	VDTC(MAX)	VDTC(MAX)
Сртс	calicurate from start-up time	ICH1 Xtstart VDTC(MAX)	ICH1 Xtstart VDTC(MAX)	ICH1 Xtstart VDTC(MAX)
(Note4)	calicurate from shat down time	IDIS1Xtshort VDTC(MAX)–VOSCL	IDIS1Xtshort VDTC(MAX)-VOSCL	IDIS1Xtshort VDTC(MAX)–VOSCL

VF:Forward Voltage of outer Diode.

Vict [sail:Saturation Voltage of M62212 or Saturation Voltage of Current buffer Transistor.
* Please setting the Oscillation frequency first and calicurate each constant value.

Note1. Please setting Io about 1/3 to 1/5 of maximum output current.

2. $|V_0| = (1 + \frac{R_1}{R_2}) XV_{REF}$

of

 VOI= (1+ ²/_{R2}) XVREF
Please setting R2 about few k to score of k because output voltage don't undergo a influence of input current (Terminal 7).
Please setting V DTC (MAX) to satisfy D (MAX), fixed from characteristics D (MAX)-VDTC (MAX).
IcH1 means DTC charge current when statle state (-10µA typ), ICH2 means DTC charge current when stable state (-10µA typ), VOSCL means DTC charge current when stable state (-10µA typ), VOSCL means lower limit volage of oscillation waveform (0.45V typ), and

tshort means time interval when output is shut down after output is shorted.