MITSUBISHI <CONTROL / DRIVER IC>

M54544L

Bi-DIRECTIONAL MOTOR DRIVER WITH BRAKE FUNCTION

DESCRIPTION

The M54544L is a semiconductor integrated circuit that is capable of directly driving a smallsize bi-directional motor rotating in both forward and reverse directions.

FEATURES

- ●Wide range of operating voltage (Vcc=4 16V)
- Possible direct driving with TTL, PMOS and CMOS IC outputs
- •Low output saturation voltage (large voltage across motors)
- Built-in clamp diode
- Large output current drive $(IO(max) = \pm 1.2A)$
- Provided with brake function

APPLICATION

Sound equipment such as tape deck and radio cassette, VTR, and other general consumer appliances

FUNCTION

The M54544L is an IC for driving a smallsize bi-directional motor that rotates in both forward and reverse directions.

When both inputs 1 and 2 are set to low-level, outputs 1 and 2 are set to "OFF". When input 1 is set to high-level and input 2 is set to low-level, output 1 is set to high-level and output 2 is set to low-level (forward rotation status). When input 1 is set to low-level and input 2 is set to high-level, output 1 is set to low-level and output 2 is set to high-level, output 1 is set to low-level and output 2 is set to high-level, output 1 is set to low-level and output 2 is set to high-level, output 1 is set to low-level and output 2 is set to high-level, output 1 is set to low-level and output 2 is set to high-level, both outputs 1 and 2 are set to low-level (brake status).

The power supply (Vcc) to the control circuit and the power supply (Vcc') for output are independently provided. The rotating speed of the motor can be therefore changed by using Vcc and Vcc' as different power supplies and by making Vcc or Vcc' variable.

If the resistance of the motor is high (light load and small drive current: tens of mA), and Vcc is larger than Vcc', current does not flow backward from the Vcc pin to the Vcc' pin.

LOGIC TRUTH TABLE

Input		Output		Remarks	
IN ₁	IN2	0 ₁	<u>0</u> 2	Remarks	
L	L	"OFF" state	"OFF" state	No operation of IC	
н	L	Н	L	ex Forward rotation	
L	Н	L	н	Reverse rotation	
Н	Н	L	L	Brake	

MITSUBISHI <CONTROL / DRIVER IC> M54544L

Bi-DIRECTIONAL MOTOR DRIVER WITH BRAKE FUNCTION

ABSOLUTE MAXIMUM RATINGS (Ta=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
VCC(1)	Supply voltage(1)		-0.5 - +16	V
VCC(2)	Supply voltage(2)	With an external heat sink (3000mm ² x 1.5mm)	-0.5 - +20	V
Vcc'	Output supply voltage		-0.5 - +16	V
VI	Input voltage		0 – Vcc	V
Vo	Output voltage		-0.5 - Vcc'+2.5	V
IO(max)	Allowable motor rush current	top=10ms : cycle time 0.2Hz or less	±1.2	А
IO(1)	Continuous output current(1)		±330	mA
IO(2)	Continuous output current(2)	With an external heat sink (3000mm ² x 1.5mm)	±600	mA
Pd	Power dissipation	Ta=75°C	1.15	W
Topr	Operating temperature		-10 - 75	°C
Tstg	Storage temperature		-55 - 125	°C

RECOMMENDED OPERATING CONDITION (Ta=25°C, unless otherwise noted)

Symbol	Parameter	Conditions	Limits			Linit
Symbol	Falameter	Conditions	Min.	Тур.	Max. 15 ±300 Vcc 0.4	Unit
Vcc	Supply voltage		4	12	15	V
lo	Output current				±300	mA
Viн	"H" input voltage		2		Vcc	V
VIL	"L" input voltage		0		0.4	V
tв	Motor braking interval		10	100		ms

ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise noted)

Ci una la a l	Deveryoter	Tast conditions			Limits			
Symbol	Parameter	Test conditions			Min.	Тур.	Max.	Unit
O(leak)	Output leak current	vont Vcc=Vcc'=20V Vo=20V	Vo=20V			100	μA	
IO(leak)	Ouput leak current	VI1=VI2=0V	Vo=0V					-100
Vouva	"H" output saturation		VI1=2V	IOH(1)=-300mA	10.8	11.2		v
VOH(1)	voltage(1)	Vcc=Vcc'=12V	VI2=0V	IOH(1)=-500mA	10.7	11.1		v
Vouvo	"H" output saturation		VI1=0V	Iон(2)=-300mA	10.8	11.2		- V
Voh(2)	voltage(2)	Vcc=Vcc'=12V	VI2=2V	Iон(2)=-500mA	10.7	11.1		
	"L" output saturation	Vcc=Vcc'=12V	VI1=0V	IOL(1)=300mA		0.18	0.5	
VOL(1) Voltag			VI2=2V	IOL(1)=500mA		0.3	0.65	V
	voltage(1)		VI1=VI2=2V			0.3	0.65	
	"I " output opturation		VI1=2V	IOL(2)=300mA		0.18	0.5	
VOL(2)	"L" output saturation voltage(2)	Vcc=Vcc'=12V	VI2=0V			0.3	0.65	V
VOL(2)			VI1=VI2=2V	, IOL(2)=500mA		0.3	0.65	
IIH(1)	"H" input current(1)	Vcc=Vcc'=12V, VI1=2V, VI2=0V		70		200	μΑ	
IIH(2)	"H" input current(2)	Vcc=Vcc'=12V, VI1=0V, VI2=2V			70		200	μΑ
	Supply current	Vcc=Vcc'=16V Output open		VI1=2V, VI2=0V			- 30	
Icc				VI1=0V, VI2=2V				
				VI1=VI2=2V			60	mA
				VI1=VI2=0V		0]

MITSUBISHI <CONTROL / DRIVER IC> M54544L

BI-DIRECTIONAL MOTOR DRIVER WITH BRAKE FUNCTION

TYPICAL CHARACTERISTICS

Thermal Derating (Absolute Maximum Rating)

"H" Output Saturation Characteristics

"L" Output Saturation Characteristics

Bi-DIRECTIONAL MOTOR DRIVER WITH BRAKE FUNCTION

CAUTIONS

Since pass current of 2 to 4A flows from the power supply to the GND for the period of 2 to 4 μ s when a mode is switched to another, be sure to put the capacitance of 10 to 100 μ F between the output power supply and the GND.

When the motor back electromotive force is large with the brakes applied, for example, malfunction may occur in internal parasitic Di. If flyback current of 1A or more flows, add Schottky Di to the portion between the output and the GND.

When the IC is used at a high speed for PWM, etc., note that switching of output results in delay of approx. $10\mu s$.

APPLICATION EXAMPLES

1) When Vcc and Vcc' are used as the same power supply

2) When Vcc is used as a fixed power supply and Vcc' is used as a variable power supply

