MITSUBISHI <LINEAR IC>

PROVISINAL INFORMATION

M52759SP

UNIFORMITY FOR CRT DISPLAY MONITOR

DESCRIPTION

M52759SP is Semiconductor Integrated Circuit for uniformity of CRT Display Monitor.

It generates horizontal and vertical parabola waves and is able to revise contrast of CRT Display Monitor if it is used with Video Pre. Amp. M52742SP that has uniformity circuit.

FEATURES

- It can control phase of horizontal wave.
- It can changes the parabola wave unbalance.
- It contains the horizontal saw wave generator and Auto Gain Control circuit, so that it is able to keep the amplitude constant if frequency change.
- It can changes the parabola wave unbalance.
- Frequency Band Width: horizontal 24 to 120kHz
 vertical 50 to 185Hz
- Input: horizontal 5Vp-p Pulse vertical 3.2 Vp-p V Saw

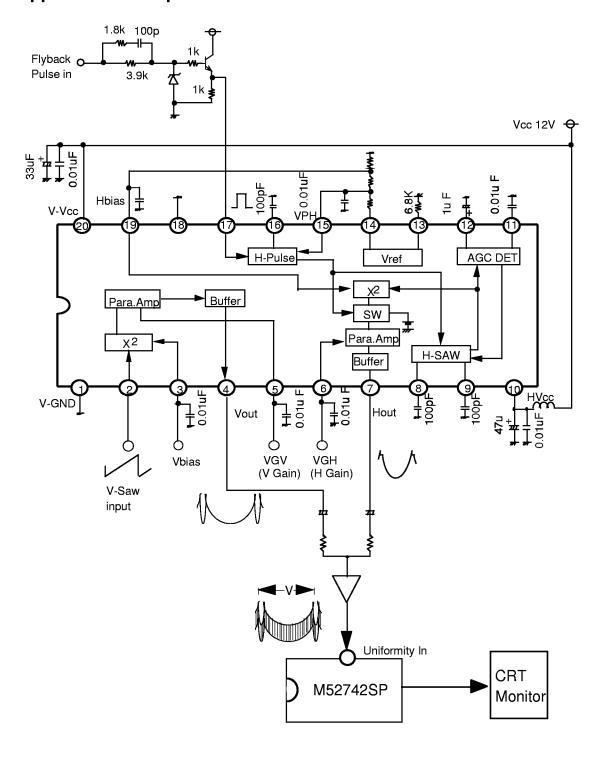
PIN CONFIGURA	T) NOIT	OP VIEW)
V-GND 1 V-saw input 2 Vbias 3 V-para output 4 VGV input 5 VGH input 6 H-para output 7 H- Saw retrace 8 H- Saw trace 9 H-Vcc 10	→ M52759SP	20 V-Vcc 19 Hbias 18 H-GND 17 H-Pulse input 16 H-Delay Capacitor 15 VPH input 14 Reference Voltage 13 Reference Voltage Resistor 12 AGC trace Capacitor 11 AGC retrace Capacitor
į	[⊃] ackage:	20P4B

STRUCTURE

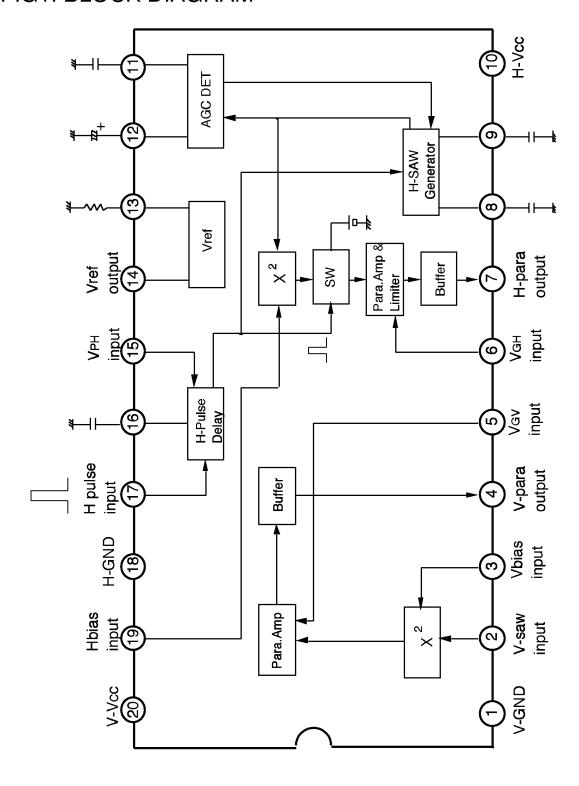
Bipolar Silicon Monolisic IC

APPLICATION

CRT Display Monitor


Supply voltage range

11.5V to 12.5V


Rated supply voltage

12V

Application Example

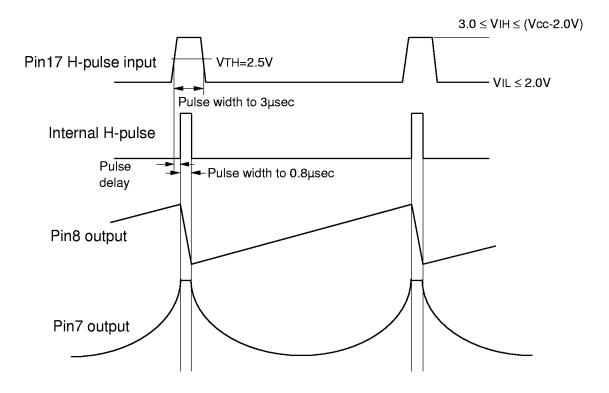


FIG1. BLOCK DIAGRAM

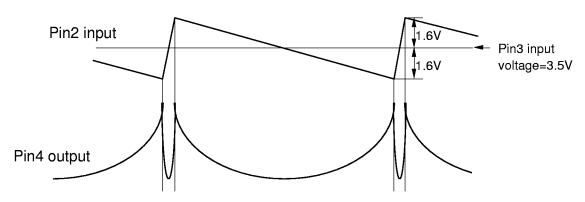
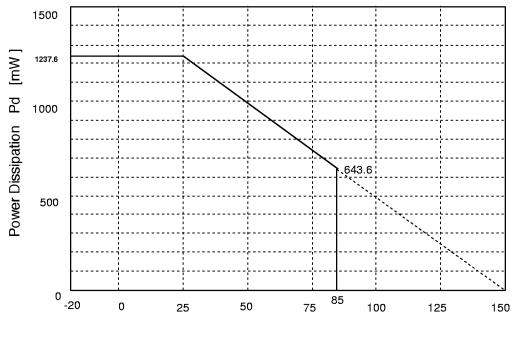


FIG2. TIMING CHART

HORIZONTAL BLOCK

VERTICAL BLOCK



1.ABSOLUTE MAXIMUM RATING

(Ta = 25°C, Surge capacity=200pF)

Parameter	Symbol	Min.	Тур	Max	Unit
Supply voltage	Vcc	-	-	13.0	٧
Power dissipation	Pd	-	-	1237.6	mW
Operating temperature	Topr	-20	-	+85	°C
Storage temperature	Tstg	-40	-	+150	°C
Recommended operating voltage	Vopr	-	12.0	-	٧
Recommended operating voltage range	Vopr'	11.5	-	12.5	٧
Surge	Vsurge	±200	-		V

Fig.3 THERMAL DERATING

Ambient Temperature Ta [°C]

2.ELECTRICAL CHARACTERISTICS

(Ta=25°C, Vcc=12V, unless otherwise noted)

No	Parameter	Symbol	Test conditions	Pin	MIN	Limit		Unit
1	Circuit current1	Іссн	10 Measure	0		21.5		mA
2	Circuit current2	Iccv	20 Measure	@	5.2	7.4	9.6	mA
3	Reference voltage output	VREF	(14) Measure	(4)	6.75	6.95	7.15	V
4	Reference voltage temperature drift	DREF	(14) Measure	14		49	_	ppm/deg

HORIZONTAL BLOCK

	Parameter			Dia		Limit		I limit
No	1 arameter	Symbol	Test conditions	Pin	MIN	STYP	MAX	Unit
5	H-pulse low input range	VIL	62.4V in Measure 33.0V in The 96KHz H-pulse in 96.1V in	7	0.0		2.0	V
6	H-pulse high input range	ViH	62.4V in Measure 133.0V in 7H=96KHz H-pulse in 196.1V in	7	3.0		VCC -2.0	v
7	H-pulse low input current	lıL	①0V in,measure	17	-5.0	-0.6	-0.1	μА
8	H-pulse high input current	Іін	⊕ 5V in,measure	17	-1.0	0.0	1.0	μА
9	H parabola width	Tw	62.4V in Measure 3.0V in 7H=96KHz H-pulse in 66.1V in	7	0.6	8.0	1.0	μsec
10	H parabola delay 1	T _{D1}	©2.4V in Measure	7	0.1	0.3	0.5	μsec
11	H parabola delay 2	TD2	62.4V in	7	0.4	0.6	8.0	μsec
12	H parabola delay 3	Трз	62.4V in Measure 4.0V in 7H=96KHz H-pulse in 96.1V in	7	2.9	3.1	3.3	μsec
13	Delay temperature drift	Do	62.4V in Measure 3.0V in 7H=96KHz H-pulse in 96.1V in	7		0.08	_	ns/deg
14	Pin (5) input current	1(1)	172.5V in,measure	15)	-5.0	-0.3	-0.1	μА

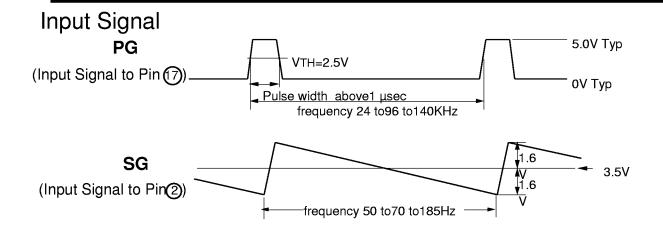
No	Dawawastaw	Symbol	Test conditions	Pin	l	_imits	;	Linit
140	Parameter	Symbol	rest conditions		MIN	TYP	MAX	Unit
15	H para. unbalance control1	UHP1	61.8V in Measure 50V in 7H=96KHz H-pulse in 95.7V in	7	-2.6	-2.2	-1.8	V
16	H para. unbalance control2	UHP2	62.4V in Measure 190V in 7H=96KHz H-pulse in 196.1V in	7	0.1	0.5	0.9	V
17	H para. unbalance control3	UHP3	61.8V in Measure 190V in 7H=96KHz H-pulse in 96.4V in	7	1.7	2.1	2.5	٧
18	H para. unbalance Vcc. character1	VUHP1	⑥2.4V in	7	-0.2	0.0	0.2	٧
19	H para. unbalance Vcc. character2	VUHP2	© 2.4V in Measure 0 0V in 0 12.5V in 1H=96KHz H-pulse in 0 6.1V in	7	-0.2	0.0	0.2	>
20	H para. unbalance temperature drift	DUHP	62.4V in Measure 190V in TH=96KHz H-pulse in 96.1V in	7		-2.2		mV /deg
21	H para. gain control1	GHP1	61.0V in Measure 33.0V in 7H=96KHz H-pulse in 6.1V in	7	0.2	0.4	0.6	Vp-p
22	H para. gain control2	GHP2	62.5V in Measure 53.0V in 7H=96KHz H-pulse in 96.1V in	7	2.9	3.3	3.7	Vp-p
23	H para. gain control3	GHP3	64.0V in Measure 33.0V in 7H=96KHz H-pulse in 6.1V in	7	5.3	6.0	6.7	Vp-p
24	H para. freq. characteristics1	FHP1	64.0V in Measure 33.0V in 7H=24KHz H-pulse in 66.1V in	7	-0.2	0.0	0.2	٧
25	H para. freq. characteristics2	FHP2	1. 0V in Measure 5 3.0V in 7 H=120KHz H-pulse in 9 6.1V in	7	-0.2	0.0	0.2	٧
26	H para. Vcc. characteristics1	VVHP1	⑥4.0V in	7	-0.2	0.0	0.2	٧
27	H para. Vcc. characteristics2	VVHP2	64.0V in Measure 3.0V in 2012.5V in 17 fH=96KHz H-pulse in 6.1V in	7	-0.2	0.0	0.2	>
28	H para. size temperature drift	DHP	64.0V in Measure 33.0V in 7H=96KHz H-pulse in 6.1V in	7	_	-1.3		mV/deg
29	Pir input current	16	6 2.4V in,measure	6	-5.0	-0.3	-0.1	μΑ
30	Pin 19 input current	1(19)	⊚ 6.1V in,measure	19	0.1	0.3	5.0	μΑ

PROVISINAL INFORMATION

UNIFORMITY FOR CRT DISPLAY MONITOR

VERTICAL BLOCK

No	Parameter	Symbol	Test conditions	Pin	MIN	_imits	MAX	Unit
31	V parabola accuracy 1	AVP1	② 3.5V in ③ 3.5V in ④ Measure ⑤ 2.3V in	4	4.5	5.0	5.5	V
32	V parabola accuracy 2	AVP2	② 1.9V in ③ 3.5V in ④ Measure ⑤ 2.3V in	4	2.5	3.0	3.5	V
33	V parabola accuracy 3	A VP3	② 2.7V in ③ 3.5V in ④ Measure ⑤ 2.3V in	4	20	25	30	%
34	V parabola accuracy 4	A VP4	② 4.3V in③ 3.5V in④ Measure ⑤ 2.3V in	4	20	25	30	%
35	V parabola accuracy 5	A VP5	② 5.1V in ③ 3.5V in ④ Measure ⑤ 2.3V in	4	90	100	110	%
36	V para. unbalance control1	UVP1	② fv=70Hz, 3.2Vpp saw wave in ③ 2.8V in ④ Measure ⑤ 1.6V in	4	-2.8	-2.5	-2.2	V
37	V para. unbalance control2	UVP2	② fv=70Hz, 3.2Vpp saw wave in ③ 3.5V in ④ Measure ⑤ 2.3V in	4	-0.3	0	0.3	V
38	V para. unbalance control3	Uvрз	② fv=70Hz, 3.2Vpp saw wave in ③ 4.2V in ④ Measure ⑤1.6V in	4	2.2	2.5	2.8	V
39	V unbalance. Vcc. characteristics 1	V UVP1	② fv=70Hz ,3.2Vpp saw wave in ③3.5V in ④ 2011.5V in	4	-0.1	0.0	0.1	V
40	V unbalance. Vcc. characteristics 2	V UVP2	② fv=70Hz, 3.2Vpp saw wave in ③3.5V in ④Measure ⑤2.3V in ⑥ 2012.5V in	4	-0.1	0.0	0.1	V
41	V unbalance. temperature drift	Duvp	② fv=70Hz, 3.2Vpp saw wave in ③ 3.5V in ④ Measure ⑤ 2.3V in	4		0.5		mV/deg
42	V parabola amplitude 1	GVP1	② fv=70Hz, 3.2Vpp saw wave in ③ 3.5V in ④ Measure ⑤1.0V in	4	0	0	0.3	Vp-p
43	V parabola amplitude 2	GvP2	② fv=70Hz, 3.2Vpp saw wave in ③ 3.5V in ④ Measure ⑤ 2.0V in	4	2.1	2.4	2.7	Vp-p
44	V parabola amplitude 3	Gvрз	② fv=70Hz, 3.2Vpp saw wave in ③ 3.5V in ④ Measure ⑤ 3.0V in	4	4.2	4.7	5.2	Vp-p
45	V para. freq. characteristics 1	FVP1	② fv=50Hz, 3.2Vpp saw wave in ③ 3.5V in ④ Measure ⑤ 3.0V in	4	-0.1	0.0	0.1	V
46	V para. freq. characteristics 2	Fv _{P2}	② fv=185Hz, 3.2Vpp saw wave in 3 3.5V in 4 Measure 5 3.0V in	4	-0.1	0.0	0.1	V
47	V para. Vcc. characteristics 1	V VP1	② fv=70Hz, 3,2Vpp saw wave in ③3.5V in ④ Measure ⑤ 3.0V in ⑥ 2011.5V in	4	-0.1	0.0	0.1	V
48	V para. Vcc. characteristics 2	V VP2	② fv=70Hz, 3, 2Vpp saw wave in ③3.5V in ④ Measure 53.0V in ⑥ ②12.5V in	4	-0.1	0.0	0.1	V
49	V para. temperature drift	Dvp	② fv=70Hz, 3.2Vpp saw wave in ③ 3.5V in ④ Measure ⑤ 3.0V in	4	_	-2.2	_	mV/deg
50	Pin input current	12	3.5V in,measure	2	-5.0	-0.3	-0.1	μΑ
51	Pin input current	13	3.5V in,measure	3	-5.0	-0.3	-0.1	μA
52	Pin input current	16	⑤ 2.3V in,measure	5	-5.0	-0.3	-0.1	μΑ

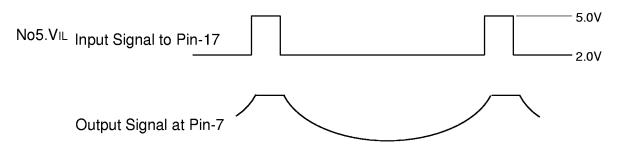

Switch and Voltage Condition

NI.	Coursels al							Switc	:h										V	olta	age	, [V]			
INO	Symbol	SW2	2 8	SW3	sw	5	SW6	SW10	sw	/15	SW17	sw	19	sw	20	Vc	c .	V2	V3	V	/5	V6	V	15	V17	V19
1	Іссн	а		а	а	ι	а	b		a	þ		a		a	12.	0 :	3,5	3,5	2	.5	2,4	3.	0	Q	6.1
2	Iccv							a							b											
3	VREF		1											á	a											
4	DREF		1								 														•	
5	VIL										a														-	
6	ViH										 														•	
7	lı∟										b														0	
8	Іін										 														5.0	
9	Tw		1								a												•		-	
10	T _{D1}		1																				C)		
11	T _{D2}		1																				1	.3		
12	Тдз																			1			4	.0		
13	DD								١.,		V												3	.0	•	
14	165		+						<u> </u>	<u> </u>	b						_			_		+			0	+
15	UHP1								;	<u>a</u>	a									1		1.8	()	-	5.7
16	UHP2																			1		2.4				6.1
17	Uнрз		1													↓	_					1.8				6.4
18	V UHP1		1		Ш				_							11.	5			\perp		2.4				6.1
19	V UHP2		1						_							12.	5			╄						
20	Duhp		1						_							12.	0			\perp		+	•	,		
21	GHP1		+														_			_		1.0	3	.0		
22	GHP2		4																	_		2.5				
23	Gнрз																			_		4.0				
24	F _{HP1}																			_						
25	FHP2		1						-							.				_						
26	VVHP1		\downarrow	_												11.	5			1						
27	V VHP2		1													12.	5			_						
28	DHP		1				<u> </u>				+					12.0	o			1		 			+	
29	16		1				b				þ	ļ.,	,				\downarrow			-		-			0	+
30	109	\		<u> </u>			а	_		<u> </u>			b	,	,	↓		 	\		<u> </u>	2.4	•		\	-

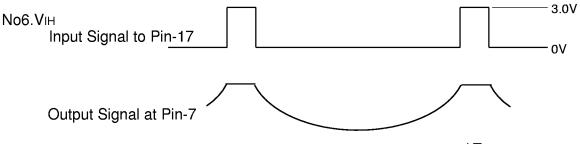
M52759SP

PROVISINAL INFORMATION

Na	Symbol							S	Sw	itc	h											٧	olta	ag	е	[٧]		
INO	Symbol	sw	12	SW3	sw	15	SW6	sw	/10	sv	V 15	sw	V 17	sw	19	sw	/20	V	СС	V2	٧	3	V5	5	٧	6	۷.	15	V17	V19
31	A VP1	a		a	г	ì	а	8	ì		a	k)	6	3		a	12	2.0	3.5	3	.5	2.	3	2	.4	3	.0	0	6.1
32	A VP2																			1.9										
33	A VP3																			2.7										
34	A VP4																			4.3										
35	A VP5																			5.1	_,	,								
36	UVP1	þ																		-	2	.8	1	.6						
37	UVP2																				3	.5	2	.3						
38	Uvрз																	•	,		4	.2	1.	6						
39	V UVP1																	1-	1.5		3	.5	2.	.3						
40	V UVP2																	12	2.5											
41	Duvp																	12	2.0				<u> </u>							
42	Gv _{P1}																						1.	0						
43	GvP2																						2.	0						
44	Gvрз																						3.	0						
45	FVP1																													
46	FVP2																	,	,											
47	V VP1																	1-	1.5											
48	V VP1																	12	2.5											
	Dvp	 																12	2.0	+			•							
	12	С		<u> </u>				Ц												3.5			2.	3						
51	13	a		b	 																		<u></u>							
52	16			а	k	o	+	•		,	<u> </u>	,	,	•	,	_ \	,	•	,	•	,	,	-		•	,	•		<u> </u>	

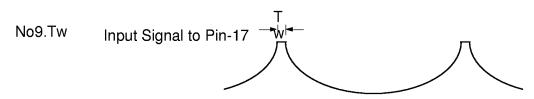

The way to measure

No1.Icch Measure the input current to Pin-10.

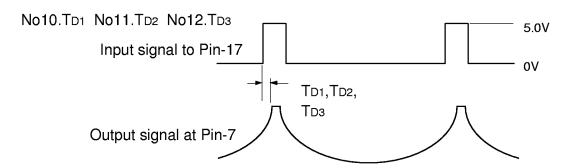

No2.Iccv Measure the input current to Pin-20.

No3.V_{REF} Measure the output voltage at Pin-14

No4.VREF Measure temperature drift of Pin-14 .(-20°C to 85°C)



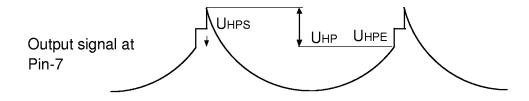
Input horizontal pulse which low level is 2V in Pin-17 and confirm output horizontal signal at Pin-7.



Input horizontal pulse which high level is 3V in Pin-17 and confirm

output horizontal signal at Pin-7.

Measure the time width of retrace period at Pin-7.



Measure the delay time from rise time of input signal to start of retrace period of output signal when the voltage of Pin-15 is 0V,1.3V,and 4V.

NO13.D D Measure the temperature drift of the delay time.(-20°C to 85°C)

NO14.I-15 Measure the input current to Pin-15 when the voltage of Pin-15 is 2.5V.

No15.UHP1 No16.UHP2 No17.UHP3

UHPS is defined as the voltage of parabola start point. UHPE is defined as the voltage of parabola end point. UHP1 UHP2 UHP3 is defined as follows

UHP1 UHP2 UHP3 = UHPS - UHPE

Measure the unbalance of parabola waveform at Pin-4 when the voltage of Pin-19 is 5.7V,6.1V,and 6.4V. Pin-6 is controlled so that the amplitude of parabola is 3Vp-p constant.

No18.V_{UHP1} When the supply voltage of Pin-10,20 is 11.5V,the unbalance of parabola waveform at Pin-7 is defined as U_{HP11.5V}.

VUHP1 = UHP2 - UHP11.5V

No19.V_{UHP2} When the supply voltage of Pin-10,20 is 12.5V,the unbalance of parabola waveform at Pin-7 is defined as UHP12.5V.

 $V_{UHP2} = U_{HP2} - U_{HP12.5V}$

No20.Duhp Measure temperature drift of Uhp2. (-20°C to 85°C)

No21.GHP1 Measure the amplitude of parabola waveform at Pin-7 and it is

defined as HP-6.1.0V

No22.GHP2 The amplitude of parabola waveform at Pin-7 is defined as

HP-6,2.5V.

No23.GHP2 The amplitude of parabola waveform at Pin-7 is defined

as HP-6,4.0V.

NO24.FHP1 When the frequency of input signal in Pin-17 is 96kHz ,the amplitude of

parabola waveform at Pin-7 is defined as HP96KHZ. When the

frequency of input signal is 24kHz, the amplitude of parabola waveform

is defined as HP24KHZ.

FHP1 = HP96KHZ - HP24KHZ

NO25.FHP2 When the frequency of input signal in Pin-17 is 140kHz ,the amplitude of

parabola waveform at Pin-7 is defined as HP120KHZ.

FHP2 = HP96KHZ -

HP140KHZ

NO26.V_{VHP1} When the supply voltage of Pin-10,20 is 12.0V,the amplitude of

parabola waveform at Pin-7 is defined as HP_{12.0}v. When the supply voltage is 11.5V, the amplitude of parabola waveform is defined as

HP11.5V.

VVHP1 = HP12.0V- HP11.5V

NO27.V_{VHP2} When the supply voltage of Pin-10,20 is 12.5V,the amplitude of

parabola waveform at Pin-7 is defined as HP12.5V.

 $V_{VHP2} = HP_{12.0V} - HP_{12.5V}$

No28.DHP Measure the temperature drift of HP96KHz. (-20°C to 85°C)

No29.I-6 Measure the input current to Pin-6 when voltage of Pin-6 is 2.4V.

No30.I-19 Measure the input current to Pin-19 when voltage of Pin-19 is 6.1V.

No31.AvP1 Measure the output voltage at Pin-4and it is defined as VP-2,3.5V.

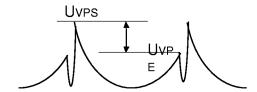
No32.AvP2 The output voltage at Pin-4 is defined as VP-2,1.9v.

$$AVP2 = VP-2.1.9V - VP-2.3.5V$$

No33, Avp3 The output voltage at Pin-4 is defined as VP-2,2.7V.

AVP3 =
$$\frac{VP_{-2,2.7V} - VP_{-2,3.5V}}{VP_{-2,1.9V} - VP_{-2,3.5V}} \times 100 (\%)$$

No34.AvP4 The output voltage at Pin-4 is defined as VP-2,4.3v.


$$AVP4 = \frac{VP-2,4.3V - VP-2,3.5V}{VP-2,1.9V - VP-2,3.5V} \times 100 (\%)$$

No35.Avp5 The output voltage at Pin-4 is defined as VP-2,5.1v.

$$AVP5 = \frac{VP-2,5.1V - VP-2,3.5V}{VP-2,1.9V - VP-2,3.5V} \times 100 (\%)$$

No36.UVP1 No37.UVP2 No38.UVP3

Output signal at Pin-7

UVPS is defined as the voltage of parabola start point . UVPE is defined as the voltage of parabola end point . UVP1 UVP2 UVP3 is defined as follows

UVP1 UVP2 UVP3 = UVPS - UVPE

Measure the unbalance of parabola waveform at Pin-4 when the voltage of Pin-3 is 2.8V,3.5V,and 4.2V. Pin-5 is controlled so that the amplitude of parabola is 3Vp-p constant

No39.V_{VP1} When the supply voltage of Pin-10,20 is 11.5V,the unbalance of parabola waveform at Pin-4 is defined as U_{VP11.5V}.

 $V_{UHP1} = U_{VP2} - U_{VP11.5V}$

No40.V_{VP2} When the supply voltage of Pin-10,20 is 12.5V,the unbalance of parabola waveform at Pin-4 is defined as U_{VP12.5V}.

VUVP2 = UVP2 - UVP12.5V

No41.Dvp Measure temperature drift of Uvp2.(-20°C to 85°C)

M52759SP

PROVISINAL INFORMATION

UNIFORMITY FOR CRT DISPLAY MONITOR

No42.GVP1 No43.GVP2

No44.G_{VP3} Measure the amplitude of parabola waveform at Pin-4 when the voltage of Pin-5 is 1V,2V,and 3V.

When the frequency of input signal in Pin-2 is 70Hz ,the amplitude of parabola waveform at Pin-4is defined as VP_{70Hz}. When the frequency of input signal is 50Hz ,the amplitude of parabola waveform is defined as VP_{50Hz}.

FVP₁ = VP_{70Hz} - VP_{50Hz}

No46.F_{VP2} When the frequency of input signal in Pin-2 is185Hz ,the amplitude of parabola waveform at Pin-4 is defined as VP_{185Hz}.

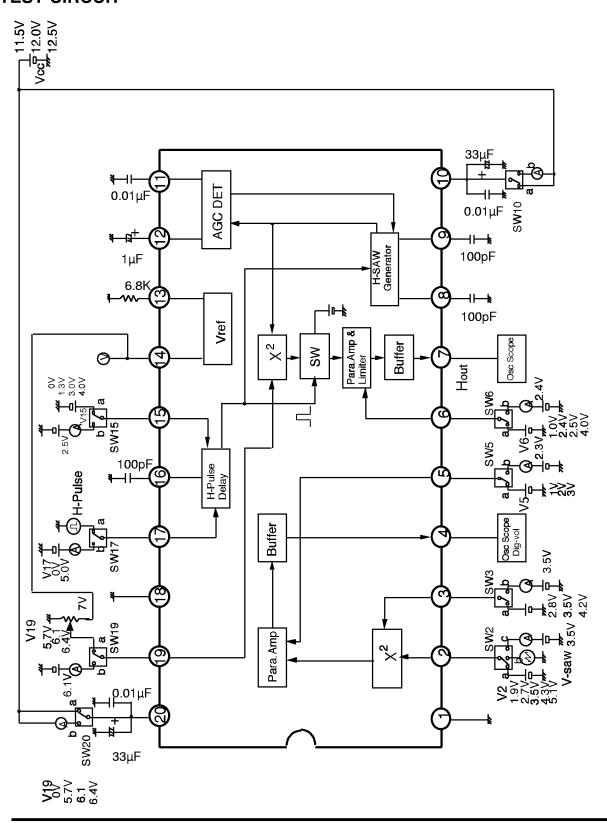
FVP2 = VP70Hz - VP185Hz

No47.V_{VP1} When the voltage of Pin-10,20 is 12.0V,the amplitude of parabola waveform is defined as VP_{12.0V}. When the voltage is 11.5V,the amplitude of parabola waveform is defined as VP_{11.5V}.

 $V_{VP1} = V_{P12.0V} - V_{P11.5V}$

No48.V_{VP2} When the voltage of Pin-10,20 is 12.5V,the amplitude of parabola waveform is defined as VP_{12.5}V.

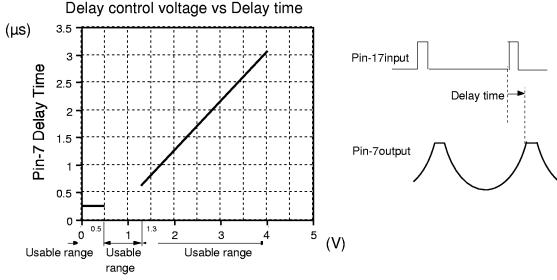
 $V_{VP2} = V_{P12.0V} - V_{P12.5V}$


No49.Duvp Measure temperature drift of VP70Hz. (-20°C to 85°C)

No_{50.l-2} Measure the input current to Pin-2 when the voltage of Pin-2 is 3.5V.

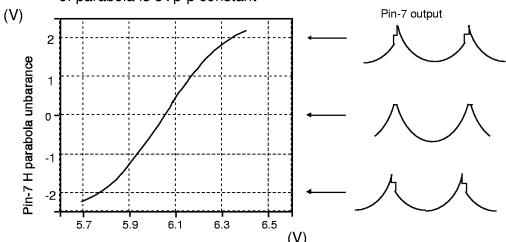
No51.I-3 Measure the input current to Pin-3when the voltage of Pin-3 is 3.5V.

No52.I-5 Measure the input current to Pin-5when the voltage of Pin-5 is 2.4V.

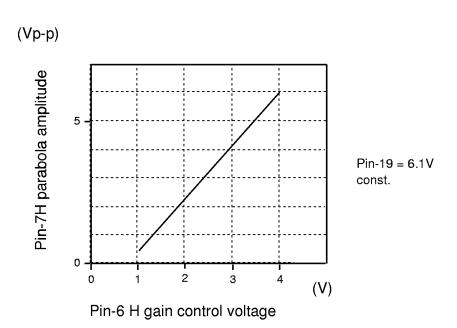

TEST CIRCUIT

3.TYPICAL CHARACTERISTICS

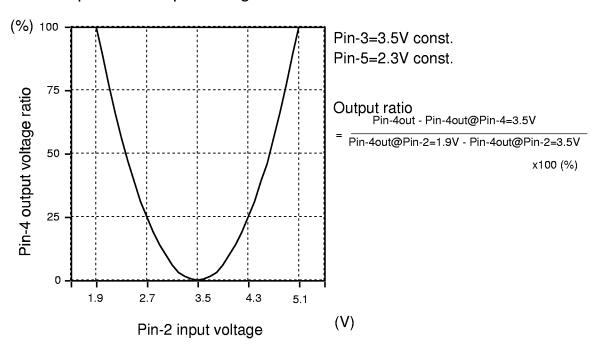
Note: This is not final characteristics.


Horizontal Block

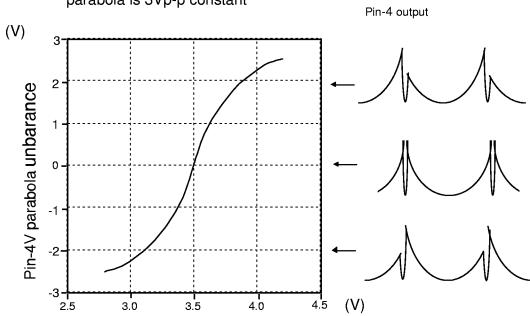
Pin-15 Delay control voltage


H unbarance control bias voltage vs H parabola unbarance

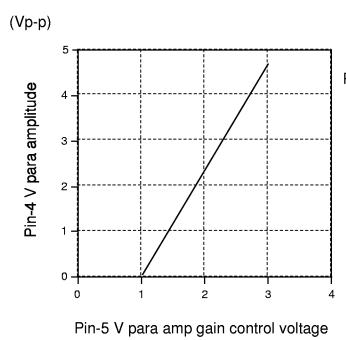
Pin-6 is controled as the amplitude of parabola is 3Vp-p constant


Pin-19 H unbarance control bias voltage

H gain control voltage vs H parabola amplitude

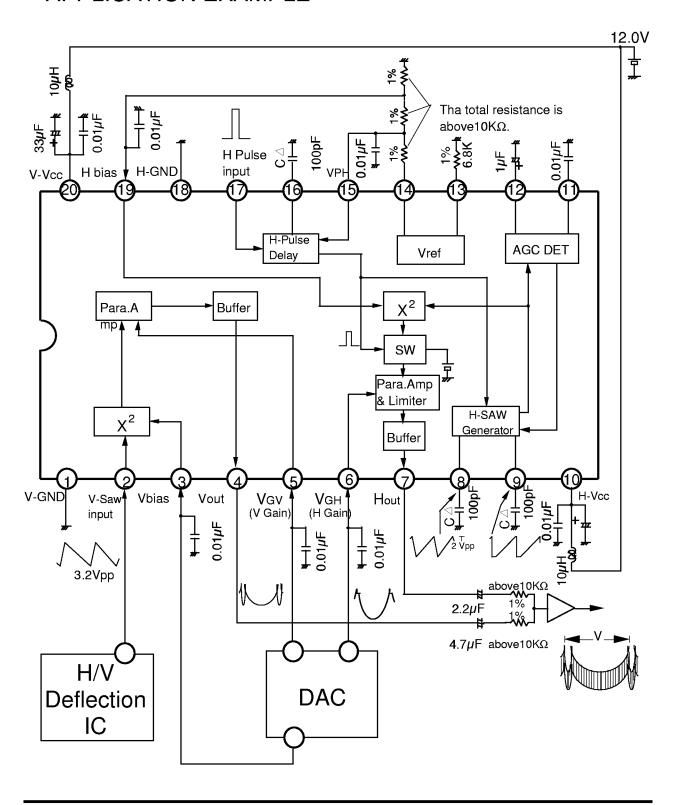

Vertical Block

V para DC output voltage ratio


V unbarance control bias voltage vs V parabola unbarance

Pin-5 is controled as the amplitude of parabola is 3Vp-p constant

Pin-3 V unbarance control bias voltage


V para amp gain control voltage vs output amplitude

Pin-2 3.2Vpp sawtooth wave input

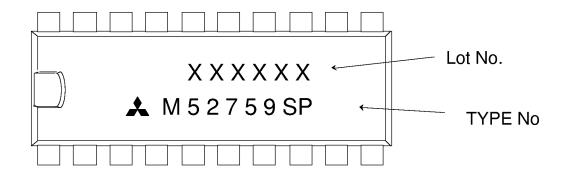
(V)

APPLICATION EXAMPLE

4.DESCRIPTION OF PIN

Pin NO	Name	DC Voltage	Equivalent circuit of pin	Remarks
1	V-GND			GND of vertical block
2	Vsawi	3.5V	V-Vcc 550uA V-GND	Vertical sawtooth wave input pin. Vbias
3	Vbias	2.8 to 4.2V	V-Vcc 950uA	Vertical parabola unbarance control bias voltage input pin. Input voltage range is 2.8 to 4.2V
4	Vout	5V (Bottom)	V-Vcc \$200 1mA	Vertical parabola wave output pin. Bottom voltage=5V(fixed) Amplitude is possible to control by pin-5
5	V GV	1.0 to 3.0V	V-Vcc S50uA SV-GND	Vertical parabola wave gain control voltage input pin.Input voltage range is 1.0 to 3.0V.
6	V gн	1.0 to 4.0V	H-Vcc Ø50uA	Horizontal parabola wave gain control voltage input pin.Input voltage range is 1.0 to 4.0V.

M52759SP


Pin NO	Name	DC Voltage	Equivalent circuit of pin	Remarks
7	Hout	2.4 to 9.2V	H-Vcc \$200 H-GND \$1mA	horizontal parabola wave output pin. Amplitude is possible to control by pin-6.
8	Cret	7.1V (Top) 4.9V (Bottom)	H-Vcc 0.25mA H-GND 37uA 60uA	Connection pin of horizon -tal retrace capacitor. Recommended capaci- tance is 100pF.
9	Ctrc	7.1V (Top) 4.9V (Bottom)	H-Vcc 9 2K \$ 2K \$ 70uA	Connection pin of horizon -tal trace capacitor. Recommended capacitance is 100pF.
10	H-Vcc	12.0V		Vcc of horizontal block.
11	Cagor	2.5V	H-GND 1.5K	Connection pin of horizon -tal sawtooth wave AGC retrace capacitor. Recommended capaci- tance is 0.01µF

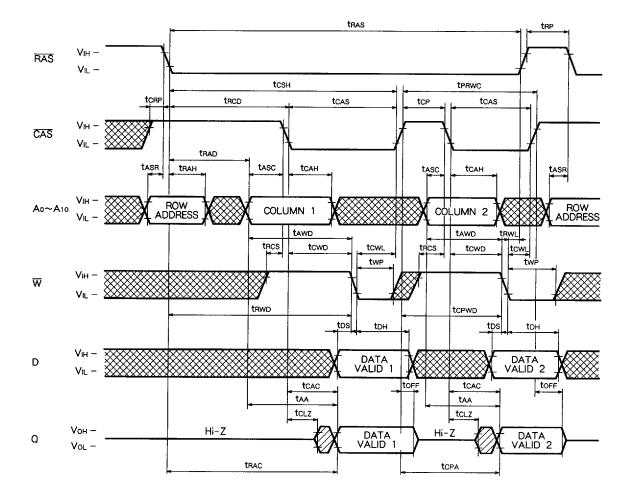
Pin NO	Name	DC Voltage	Equivalent circuit of pin	Remarks
12	Cagc	4.0V	H-Vcc 7.5K	Connection pin of horizon -tal AGC capacitor. Recommended capaci- tance is 1µF.
13	Vrefr	1.28V	H-Vcc 4K	Connection pin of reference current source resister. Recommended resistance is $6.8 \mathrm{K}\Omega$.
14	Vrefo	7.0 V	H-Vcc H-GND 0.2mA	Reference voltage output for horizontal pulse delay circuit. Should be connect more than $10k\Omega$ external resister.
15	V PH	0 to 0.5V 1.34. to V	H-Vcc 950uA	Delay adjustment voltage input pin of horizontal pulse.Input voltage range is 1.3 to 4.0V.At 0 to 0.5V, delay is minimized. (0.5 to 1.3V is unusable range.)
16	Chpd	0V (Bottom)	H-Vcc 2K 2K 950uA	Connection pin of horizon -tal pulse delay timing capacitor.Recommended capacitance is 100pF. 0.5 to 5.0Vpp

PROVISINAL INFORMATION

Pin NO	Name	DC Voltage	Equivalent circuit of pin	Remarks	
17	HPin		H-Vcc 950uA 1K \$50K	Horizontal pulse input pin. Low input level is less than 2.0V,and high is 3.0 to 10V(at Vcc=12V).	
18	H-GND			GND of horizontal block	
19	Hbias	5.7 to 6.4V	H-Vcc 1K 1p 1p 50uA	Horizontal parabolall unbarance control bias voltage input pin.Input Voltage range is 5.7 to 6.4V.	
20	V-Vcc	12.0V		Vcc of vertical block	

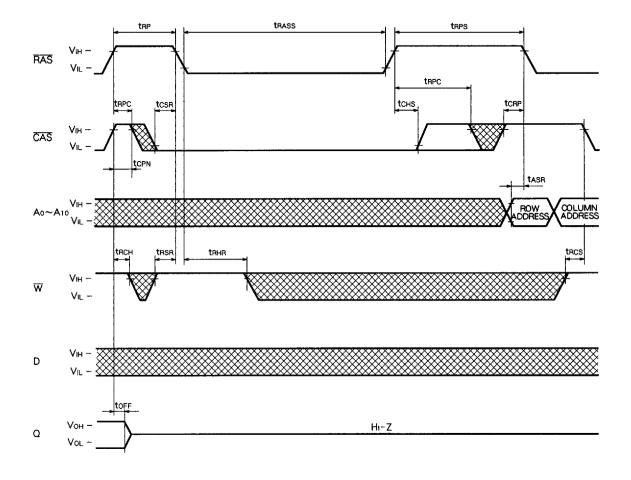
5. MARK

6. Material


Frame Copper alloy
Lead plating Solder plating
Resin Epoxy resin

7. Factory of massproduction

FUKUOKA Fuctory


FAST PAGE MODE 4194304-BIT(4194304-WORD BY 1-BIT)DYNAMIC RAM

Fast-Page-Mode Read-Write, Read-Modify-Write Cycle

FAST PAGE MODE 4194304-BIT(4194304-WORD BY 1-BIT)DYNAMIC RAM

Self Refresh Cycle* (Note 30)

