3-CHANNEL VIDEO AMPLIFICATION

DESCRIPTION

The M52732SP is a semiconductor integrated circuit that has 3channels of built-in amplifiers in the broad-band video amplifier having a 75MHz band. Every channel is provided with a broad-band amplifier, contrast control (main and sub), and brightness control. It accordingly has an optimal configuration for use with high resolution color display monitors.

FEATURES

- It realize low power dissipation so that 3-channels are built in. (Vcc=12V, Icc=63mA)
- Input.....0.7VP-P (typ.) Output.....4.5VP-P (max.) Frequency band.....75MHz (at 3VP-P)
- To adjust contrast, two types of controls are provided, main and sub.

The main controls adjusts 3-channels of contrast concurrently. The sub contrast controls adjusts either channel independentry.

APPLICATION

Display monitor

RECOMMENDED OPERATING CONDITION

Supply voltage range	11.5 to 12.5V
Rated supply voltage	12.0V

3-CHANNEL VIDEO AMPLIFICATION

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings	Unit
Vcc	Supply voltage	13.0	V
Pd	Power dissipation	1580	mW
Topr	Ambient temperature	-20 to +85	°C
Tstg	Storage temperature	-40 to +150	°C
Vopr	Recommended supply voltage	12.0	V
Vopr'	Recommended supply voltage range	11.5 to 12.5	V
Surge	Electrostatic discharge	±200	V

ELECTRICAL CHARACTERISTICS (Vcc=12V, Ta=25°C, unless otherwise noted)

					Test cor	nditions							
Symbol	Parameter	Test		Input		Externa	power s	upply (V)	Pulse input		Limits		Unit
		point (s)	SW10 R-ch	SW6 G-ch	SW2 B-ch	V3	V13	V15	SW14	Min. Typ. M		Max.	ι.
Icc	Circuit current	А	a _	a _	a _	12	12	5	b SG6	45	72	110	mA
Vomax	Output dynamic range	T.P.20 T.P.24 T.P.28	b SG1	b SG1	b SG1	12	12	Variable	a _	5.8	6.8	9.0	Vp-p
Vimax	Maximum input	T.P.20 T.P.24 T.P.28	b SG1	b SG1	b SG1	12	6	Variable	a _	1.9	2.4	2.9	Vp-p
Gv	Maximum gain	T.P.20 T.P.24 T.P.28	b SG1	b SG1	b SG1	12	12	Vт	a _	13	17	20	dB
ΔGv	Relative maximum gain			Relat	ive to m	easured	values	above		0.8	1	1.2	-
VCR1	Contrast control characteristics (typical)	T.P.20 T.P.24 T.P.28	b SG1	b SG1	b SG1	12	6	VT	a _	4.0	7.4	10.1	dB
$\Delta VCR1$	Contrast control relative characteristics (typical)			Relat	ive to m	easured	values	above		0.8	1	1.2	-
VCR2	Contrast control characteristics (minimum)	T.P.20 T.P.24 T.P.28	b SG1	b SG1	b SG1	12	3.5	Vт	a _	5	30	70	mVp-p
$\Delta VCR2$	Contrast control relative characteristics (minimum)			Relat	ive to m	easured	values	above		0.8	1	1.3	_
VSCR1	Sub contrast control characteristics (typical)	T.P.20 T.P.24 T.P.28	b SG1	b SG1	b SG1	6	12	Vт	a _	9.9	14	18.1	dB
$\Delta VSCR1$	Sub contrast control relative characteristics (typical)			Relat	ive to m	easured	values	above		0.8	1	1.2	_
VSCR2	Sub contrast control characteristics (minimum)	T.P.20 T.P.24 T.P.28	b SG1	b SG1	b SG1	3	12	Vт	a _	50	300	600	mVp-p
$\Delta VSCR2$	Sub contrast control relative characteristics (minimum)			Relat	ive to m	easured	values	above		0.8	1	1.2	_
VCR2	Contrast/sub contrast control characteristics (typical)	T.P.20 T.P.24 T.P.28	b SG1	b SG1	b SG1	6	6	VT	a _	0.9	1.3	1.7	Vp-p
ΔVcr2	Contrast/sub contrast control relative characteristics (typical)		Relative to measured values above					0.8	1	1.2	-		
Vb1	Brightness control characteristics (maximum)	T.P.20 T.P.24 T.P.28	a _	a -	a _	12	12	5.5	b SG6	3.6	4.3	5.0	v
$\Delta VB1$	Brightness control relative characteristics (maximum)			Relat	ive to m	easured	values	above		-100	0	100	mV

3-CHANNEL VIDEO AMPLIFICATION

ELECTRICAL CHARACTERISTICS (cont.)

					Test cor	nditions							
Symbol	Parameter	Test		Input		Externa	l power si	upply (V)	Pulse input		Limits		Unit
		point (s)	SW10 R-ch	SW6 G-ch	SW2 B-ch	V3	V13	V15	SW14	Min.	Тур.	Max.	
Vb2	Brightness control characteristics (typical)	T.P.20 T.P.24 T.P.28	a _	a _	a _	12	12	5	b SG6	3.0	3.7	4.4	V
ΔVB2	Brightness control relative characteristics (typical)			Relat	ive to m	easured	values	above	I	-100	0	100	mV
Vвз	Brightness control characteristics (minimum)	T.P.20 T.P.24 T.P.28	a _	a _	a _	12	12	4.5	b SG6	2.5	3.2	4.0	VDC
ΔVвз	Brightness control relative characteristics (minimum)			Relat	ive to m	easured	values	above		-100	0	100	mV
FC1	Frequency characteristics 1 (f=50MHz;maximum)	T.P.20 T.P.24 T.P.28	b SG3	b SG3	b SG3	12	7.5	VT	a _	-2	0	3	dB
∆Fc1	Frequency relative characteristics 1 (f=50MHz;maximum)			Relat	ive to m	easured	values	above		-1	0	1	dB
FC1'	Frequency characteristics 1 (f=75MHz;maximum)	T.P.20 T.P.24 T.P.28	b SG4	b SG4	b SG4	12	7.5	VT	a _	-3	0	3	dB
ΔFc1'	Frequency relative characteristics 1 (f=75MHz;maximum)			Relat	ive to m	easured	values	above		-1	0	1	dB
FC2	Frequency characteristics 2 (f=50MHz; maximum)	T.P.20 T.P.24 T.P.28	b SG3	b SG3	b SG3	12	5	VT	a _	-0.5	0	3	dB
ΔFc2'	Frequency relative characteristics 2 (f=75MHz; maximum)	T.P.20 T.P.24 T.P.28	b SG4	b SG4	b SG4	12	5	VT	a _	-0.5	0	3	dB
C.T.1	Crosstalk 1 (f=50MHz)	T.P.20 T.P.24 T.P.28	b SG3	a _	a _	12	12	VT	a _	_	-36	-24	dB
C.T.1'	Crosstalk 1 (f=75MHz)	T.P.20 T.P.24 T.P.28	b SG4	a _	a _	12	12	VT	a _	_	-28	-18	dB
C.T.2	Crosstalk 2 (f=50MHz)	T.P.20 T.P.24 T.P.28	a _	b SG3	a _	12	12	VT	a _	_	-36	-24	dB
C.T.2'	Crosstalk 2 (f=75MHz)	T.P.20 T.P.24 T.P.28	a _	b SG4	a _	12	12	VT	a _	_	-28	-18	dB
C.T.3	Crosstalk 3 (f=50MHz)	T.P.20 T.P.24 T.P.28	a _	a _	b SG3	12	12	VT	a _	_	-36	-24	dB
C.T.3'	Crosstalk 3 (f=75MHz)	T.P.20 T.P.24 T.P.28	a _	a _	b SG4	12	12	VT	a _	_	-28	-18	dB
Tr	Pulse characteristics 1	T.P.20 T.P.24 T.P.28	b SG5	b SG5	b SG5	12	7	3	b SG6	_	3	7	nsec
Tf	Pulse characteristics 2	T.P.20 T.P.24 T.P.28	b SG5	b SG5	b SG5	12	7	3	b SG6	_	6	9	nsec
V14th	Clamp pulse threshold voltage	T.P.20 T.P.24 T.P.28	a _	a _	a _	12	12	3	b SG6	0.7	1.5	2.5	VDC
W14	Clamp pulse minimum width	T.P.20 T.P.24 T.P.28	a _	a _	a _	12	12	3	b SG6	_	0.3	1.5	μsec
V27	Hold voltage	T.P.20 T.P.24 T.P.28	a _	a _	a _	12	12	3	b SG6	4	5.2	6.4	VDC

3-CHANNEL VIDEO AMPLIFICATION

ELECTRICAL CHARACTERISTICS TEST METHOD

- About switch numbers (SW Nos.) since those for the signal and pulse input pins are listed in Attached Table 1, the following notes omit them. Only SW Nos. for the external power supply will be indicated in the Notes.
- 2. since sub contrast voltges V3, V7, and V11, they are also set to the same value, so that V3 in attached Table 1 represents all.

Icc Circuit current

Conditions shall be as indicated in Attached Table 1. Measure these conditions using ampere meter A with SW1 set to a.

Vomax Output dynamic range

1. Follow the procedure below to set V15.

Input SG1 to pin 10 (pin 6, 2) and raise V15 slowly. Read the voltage of V15 when the higher peak of output waveform of T.P20 (T.P24, 28) begins distortion. This voltage is VTR1 (VTG1, VTB1) Next, reduce V15 slowly. Read the voltage of V15 when the lower peak of output waveform of T.P20 (T.P24, 28) begins distortion. This voltage is VTR2 (VTG2, VTB2).

Waveform output at T.P20 (Identical to output at T.P24 and T.P28.)

From the above result, VT (VTR, VTG, VTB) is determined as follows:

Change the procedure according to output pins.

Use VTR1 when measuring T.P20. Similarly, VTG1 for T.P24, VTB1 for T.P28.

 Set V15 to VTR (VTG, VTB), then slowly raise SG1 amplitude starting from 700mV. Measure the output amplitude when the higher and lower peaks of T.P20 (T.P24, T.P28) output waveform simultaneously begin distortion.

Vimax Maximum input

Under the conditions in Note 2, vary V13 to 6.7V as indicated in Attached Table 1, then slowly raise amplitude of the input signal starting from 700mVP-P. Read the amplitude of the input signal when the output signal begins distortion.

Gv Maximum gain

$\Delta {\rm Gv}$ Relative maximum gain

- 1. Under conditions in attached Table.
- 2. Input SG1 to pin 10 (pin 6, 2). Read amplitude of the output at T.P20 (T.P24, 28), which is VOR1 (VOG1, VOB1).
- 3. The maximum gain G is:

4. The maximum relative gain ΔG is calculated by the equation below:

 $\Delta G_{V=VOR1/VOG1}, VOG1/VOB1, VOB1/VOR1$

VCR1 Contrast control characteristics (typical) ΔVCR1 Contrast control relative characteristics (typical)

- 1. Conditions are identical with those in Attached Table except setting V13 to 6.0V.
- 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR2 (VOG2, VOB2)
- The contrast control characteristics VCR1 and relative contrast control characteristics ∆VCR1 are calculated by the equations below:

 $\Delta VCR1=VOR2/VOG2, VOG2/VOB2, VOB2/VOR2$

VCR2 Contrast control characteristics (minimum) ΔVCR2 Contrast control relative characteristics (minimum)

- 1. Conditions are identical with those in Attached Table except setting V13 to 3.0V.
- 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR3 (VOG3, VOB3) and also VCR2.
- 3. The relative contrast control characteristics Δ Vcr2 is: Δ Vcr2=Vor3/Vog3, Vog3/Vog3, Vog3/Vog3

VSCR1 Sub contrast control characteristics (typical) ΔVSCR1 Sub contrast control relative characteristics (typical)

- 1. Conditions are identical with those in Attached Table except setting V3, V7, and V11 to 6.0V.
- 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR4 (VOG4, VOB4).
- 3. The sub contrast control characteristics VscR1 and relative sub contrast control characteristics ΔVscR1 are:

 Δ VSCR1=VOR4/VOG4, VOG4/VOB4, VOB4/VOR4

[mV]

3-CHANNEL VIDEO AMPLIFICATION

VSCR2 Sub contrast control characteristics (minimum)

- ΔVscr2 Sub contrast control relative characteristics (minimum)
- 1. Conditions are identical with those in Attached Table expect setting V3, V7, and V11 to 3.0V.
- 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR5 (VOG5, VOB5) and also VSCR2.
- 3. The relative sub contrast control characteristics $\Delta Vscr_2$ is: $\Delta Vscr_2=Vor_5/Vog_5, Vog_5/Vog_5, Vog_5/Vor_5$

VCR2 Contrast/sub contrast control characteristics (typical) ΔVCR2 Contrast/sub contrast control relative

characteristics (typical)

- 1. Conditions are identical with those in Attached Table expect setting V13, to 6.0V and V3, V7, and V11 to 6.0V.
- 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR6 (VOG6, VOB6).
- 3. The gain and relative gain when the contrast and sub contrast are typical, are:

VCR3=20LOG	VOR6 (VOG6, VOB6)	[Vp-p]
VCR3=20LOG	0.7	[Vp-p]

 Δ VCR3=VOR6/VOG6, VOG6/VOB6, VOB6/VOR6

VB1 Brightness control characteristics (maximum) ΔVB1 Brightness control relative characteristics (maximum)

- 1. Under conditions in Attached Table.
- 2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28), which is VOR7 (VOG7, VOB7). This value is VB1.
- 3. In addition, the relative brightness control characteristic is determined from VOR7, VOG7, and VOB7 by calculating differences between each channel.

[mV]

$\Delta VB1 = VOR7 - VOG7$	
=VOG7-VOB7	
=VOB7-VOR7	

VB2 Brightness control characteristics (typical) ΔVB2 Brightness control relative characteristics (typical)

- 1. Under conditions in Attached Table.
- Then use a voltmeter to measure the output at T.P20 (T.P24, 28), which is VOR7' (VOG7', VOB7'). This value is VB2.
- In addition, the relative brightness control characteristic is determined from VOR7', VOG7', and VOB7' by calculating differences between each channel.

VB3 Brightness control characteristics (minimum) ΔVB3 Brightness control relative characteristics (minimum)

- 1. Under conditions in Attached Table.
- 2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28), which is VOR7" (VOG7", VOB7"). This value is VB3.
- In addition, the relative brightness control characteristic ΔVB3 is determined from VOR7", VOG7", and VOB7" by calculating differences between each channel.

ΔVb3 =V0r7"-V0g7" =V0g7"-V0b7" =V0b7"-V0r7"

Fc1 Frequency characteristics1 (f=50MHz; maximum) ∆Fc1 Frequency relative characteristics1 (f=50MHz; maximum) Fc1' Frequency characteristics1 (f=75MHz; maximum)

 Δ Fc1' Frequency relative characteristics1 (f=75MHz; maximum) (f=75MHz; maximum)

- 1. Under conditions in Attached Table.
- 2. Use SG3 and SG4. Measure amplitude of the output waveform at T.P20 (T.P24, T.P28) following the procedure in Gv, Δ Gv.
- 3. The frequency characteristics Fc1, Fc1' are calculated by the equations below:

Fc1=20LOG	Vor8 (Vog8, Vob8)	[Vp-p]
FC1=20LOG	Vor1 (Vog1, Vob1)	[Vp-p]
Fc1'=20LOG	Vor9 (Vog9, Vob9)	[Vp-p]
FGT=20LOG	Vor1 (Vog1, Vob1)	[Vp-p]

Whre, VOR8 (VOG8, VOB8) is the output amplitude when inputting SG3, and VOR9 (VOG9, VOB9), SG4, which are measured in 2 above. (VOR1 (VOG1, VOB1) is the value measured in Gv, Δ Gv.)

4. The relative frequency characteristics ΔFc_1 , ΔFc_1 are determined by calculating differences between each channel's Fc_1 and Fc_1'.

Fc2 Frequency characteristics2 (f=50MHz; maximum) ∆Fc2' Frequency relative characteristics2 (f=75MHz; maximum)

The procedure is identical with that in Fc1, Δ Fc1, Fc1', Δ Fc1' except that the contrast (V13) is reduced to 5.0V.

C.T.1 Crosstalk1 (f=50MHz) C.T.1' Crosstalk1 (f=75MHz)

- 1. Under conditions in attached Table.
- 2. Input SG2 (or SG4) to pin 10 (R-ch) only. Then measure amplitude of the output waveform at T.P20 (T.P24, T.P28), which are Vor, Vog, and VoB, respectively.
- 3. Crosstalk C.T. is:

MITSUBISHI ICs (Monitor)

3-CHANNEL VIDEO AMPLIFICATION

C.T.2 Crosstalk2 (f=50MHz)

C.T.2' Crosstalk2 (f=75MHz)

- 1. Afterthe input pin from 10 (R-ch) to 6 (G-ch) and read the output following the procedure in C.T.1, C.T.1'.
- 2. Crosstalk C.T. is:

C.T.3 Crosstalk3 (f=50MHz)

C.T.3' Crosstalk3 (f=75MHz)

- 1. After the input pin from 10 (R-ch) to 2 (B-ch) and read the output following the procedure in C.T.1, C.T.1'.
- 2. Crosstalk C.T. is:

Tr Pulse characteristics1

- Tf Pulse characteristics2
- 1. Under conditions in attached Table.
- 2. Measure 10% to 90% rise Tr1 and fall Tf1 of the input pulse using an active probe.
- 3. Next, measure 10% to 90% rise Tr2 and fall Tf2 of the output pulse using an active probe.
- 4. Pulse characteristics Tr and Tf are calculated by the equations below :

Tr (nsec)=
$$\sqrt{(Tr2)^2 - (Tr1)^2}$$

Tf (nsec)= $\sqrt{(Tf2)^2 - (Tf1)^2}$

V14th Clamp pulse threshold voltage

- 1. Under conditions in attached Table.
- Then slowly reduce the level of SG6 monitoring the output (approx.2.0Vbc) and measure the level of SG6 when the output becomes 0V.

W14 Clamp pulse minimum width

Under the conditions in V14th, slowly reduce the pulse width of SG6 monitoring the output.

Then measure the pulse width of SG6 when the output becomes ${
m oV}.$

V27 Hold voltage

1. Under conditions in attached Table.

2. Read T.P19, 23 and 27 with a voltmeter.

3-CHANNEL VIDEO AMPLIFICATION

INPUT SIGNAL

SG No.	Signals
	Sine wave of amplitude 0.7VP-P (75kHz, amplitude partlym variable*)
SG1	
SG2	Sine wave with amplitude of 0.7VP-P (f=10MHz)
SG3	Sine wave with amplitude of 0.7VP-P (f=50MHz)
SG4	Sine wave with amplitude of 0.7VP-P (f=75MHz)
	Pulse with amplitude of 0.7VP-P (f=1MHz, duty=50%)
SG5	0.7VP-P
SG6	Pulses of amplitude 2.0VP-P and width 3.0 synchronizing to the pedestal of the standard video staircase
SG7 Standard video staircase	
	* See Notes

* See Notes

3-CHANNEL VIDEO AMPLIFICATION

TYPICAL CHARACTERISTICS

3-CHANNEL VIDEO AMPLIFICATION

APPLICATION EXAMPLE

Units Resistance : Ω Capacitance : F

MITSUBISHI ICs (Monitor)

M52732SP

3-CHANNEL VIDEO AMPLIFICATION

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
1 5 9	Vcc (B-ch) Vcc (G-ch) Vcc (R-ch)	12	-	The voltage to be applied to 3 channels shall be equal.
2 6 10	B-IN G-IN R-IN	2.9	Vcc 1k Vcc Vcc 3.6k GND	
3 7 11	B SUB CONTRAST G SUB CONTRAST R SUB CONTRAST	4.0	4k Vcc Vcc 72k 0.12mA GND	
4, 25 8, 21 12, 17	GND (B-ch) GND (G-ch) GND (R-ch)	GND	-	
13	CONTRAST	6.9	4k Vcc 72k 0.4mA GND	
14	CLAMP PULSE		Vcc 50k (14) GND	

DESCRIPTION OF PIN

MITSUBISHI ICs (Monitor)

M52732SP

3-CHANNEL VIDEO AMPLIFICATION

	ION OF PIN (c			
Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
15	BRIGHT		Vcc ¥ (15) GND	
16	Vcc	12	-	
18 22 26	NC			
19 23 27	R HOLD G HOLD B HOLD	Variable		
20 24 28	B OUT G OUT R OUT	Variable	Vcc	A resistor is needed at the GND side. Choose any resistance value under 15mA according to the driving capability required.

DESCRIPTION OF PIN (cont.)