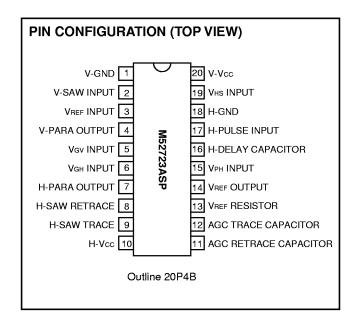
DYNAMIC FOCUS

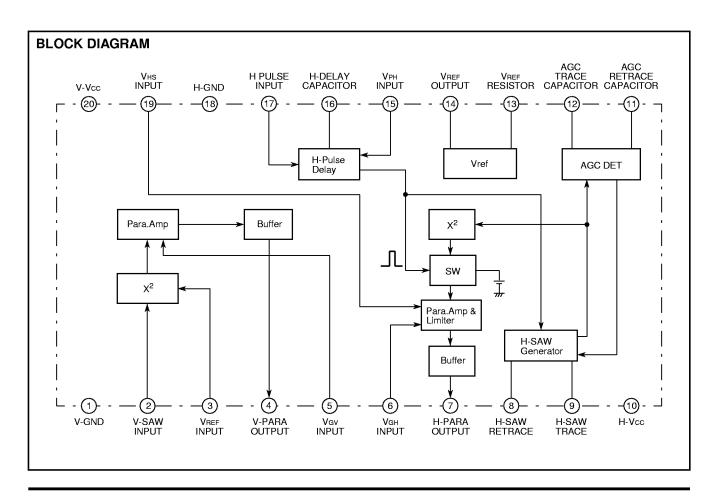
DESCRIPTION

The M52723ASP is semiconductor integrated circuit for Multi-Sync display monitors.

It generates horizontal and vertical parabola waves, and it can revise focus of CRT monitors.

FEATURES


- It can control phase of horizontal wave.
- It contains the horizontal saw wave generator and Auto Gain Control circuit, so that it is able to keep the amplitude constant if frequency change.
- It change the parabola wave inretrace period to constant voltage in order to reduce load at the amplitude after IC.


APPLICATION

CRT display monitor

RECOMMENDED OPERATING CONDITION

Supply voltage range	11.5 to 12.5V
Rated supply voltage	12V

1

DYNAMIC FOCUS

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter		Unit		
Syllibol	Farameter	Min.	Тур.	Max.	Offic
Vcc	Supply voltage	_	_	13.0	٧
Pd	Power dissipation	_	_	1237.6	mW
Topr	Operating temperature	-20	_	+85	°C
Tstg	Storage temperature	-40	_	+150	°C
Vopr	Recommended operating voltage	_	12.0	_	٧
Vopr'	Recommended operating voltage range	11.5	-	12.5	٧
Vsurge	Surge	±200	-	_	٧

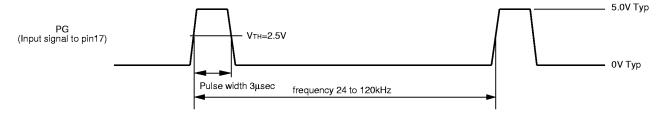
ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=12V, unless otherwise noted)

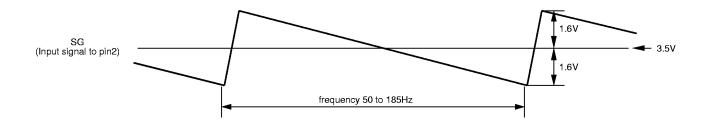
Symbol	Parameter	Test conditions	Pin No.			Unit	
Syllibol	1 alameter	rest cortations	T III INO.	Min.	Тур.	Max.	Offic
Іссн	Circuit current 1	(10) Measure	10	15.1	21.5	27.9	mA
Iccv	Circuit current 2	(20) Measure	20	5.2	7.4	9.6	mA
VREF	Reference voltage output	(14) Measure	14	6.75	6.95	7.15	V
DREF	Reference voltage temperature drift	(14) Measure	14	_	49	_	ppm/deg
HORIZON	ITAL BLOCK						
VIL	H-pulse low input range	(6) 4.0V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 3.2V in	7	0.0	_	2.0	٧
VIH	H-pulse high input range	(6) 4.0V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 3.2V in	7	3.0	_	Vcc -2.0	٧
lıL.	H-pulse low input current	(17) 0V in, measure	17	-5.0	-0.6	-0.1	μΑ
Iн	H-pulse high input current	(17) 5V in, measure	17	-1.0	0.0	1.0	μΑ
Tw	H parabola width	(6) 4.0V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 3.2V in	7	0.50	0.70	0.90	μsec
T _D 1	H parabola delay 1	(6) 4.0V in (7) Measure (15) 0V in (17) fH=50kHz H-pulse in (19) 3.2V in	7	-0.09	0.09	0.35	μsec
TD2	H parabola delay 2	(6) 4.0V in (7) Measure (15) 1.5V in (17) fH=50kHz H-pulse in (19) 3.2V in	7	0.19	0.41	0.65	μsec
Трз	H parabola delay 3	(6) 4.0V in (7) Measure (15) 4.0V in (17) fH=50kHz H-pulse in (19) 3.2V in	7	2.65	2.95	3.20	μsec
D D	Delay temperature drift	(6) 4.0V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 3.2V in	7	_	-0.08	_	ns/deg
l15	Pin15 input current	(15) 2.5V in, measure	15	-5.0	-0.4	-0.1	μΑ
V HP	H parabola amplitude	(6) 2.5V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 4.0V in	7	7.5	8.2	8.9	V _{P-P}
FHP1	H para. freq. characteristics 1	(6) 2.5V in (7) Measure (15) 3.0V in (17) fH=24kHz H-pulse in (19) 4.0V in	7	-0.2	0.0	0.2	٧
FHP2	H para. freq. characteristics 2	(6) 2.5V in (7) Measure (15) 3.0V in (17) fH=110kHz H-pulse in (19) 4.0V	7	-0.2	0.0	0.2	٧
VVHP1	H para. Vcc. characteristics 1	(6) 2.5V in (7) Measure (15) 3.0V in (10) (20) 11.5V in (17) fH=50kHz H-pulse in (19) 4.0V in	7	-0.1	0.0	0.1	V
V VHP2	H para. Vcc. characteristics 2	(6) 2.5V in (7) Measure (15) 3.0V in (10) (20) 12.5V in (17) fH=50kHz H-pulse in (19) 4.0V	7	-0.1	0.0	0.1	٧
DHP	H para. size temperature drift	(6) 2.5V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 4.0V in	7	_	-275	_	ppm/deg
SHP1	H para. size control 1	(6) 2.5V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 4.0V in	7	7.5	8.2	8.9	V P-P
SHP2	H para. size control 2	(6) 2.5V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 2.0V in	7	20	25	30	%
SHP3	H para. size control 3	(6) 2.5V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 0V in	7	-5	0	5	%
GHP1	H para. gain control 1	(6) 1.0V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 4.0V in	7	0.7	0.9	1.1	V P-P
GHP2	H para. gain control 2	(6) 2.5V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 4.0V in	7	4.2	4.7	5.2	-
G HР3	H para. gain control 3	(6) 4.0V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 4.0V in	7	8.36	8.76	9.16	V _{P-P}

DYNAMIC FOCUS

ELECTRICAL CHARACTERISTICS (cont.)

Symbol	Parameter	Test conditions	Pin No.			- Unit	
Syllibol	Farameter	lest conditions	PIII NO.	Min.	Тур.	Max.	Oniii
DLI	H para. limit size temperature drift	(6) 4.0V in (7) Measure (15) 3.0V in (17) fH=50kHz H-pulse in (19) 4.0V in	7	-	106	_	ppm/deg
l6	Pin6 input current	(16) 2.5V in, measure	6	-5.0	-0.4	-0.1	μΑ
I 19	Pin19 input current	(19) 2.0V in, measure	19	-5.0	-0.4	-0.1	μА
VERTICAL	BLOCK	·					
AVP1	V parabola accuracy 1	(2) 1.9V in (3) 3.5V in (4) measure (5) 4.0V in	4	9.5	10.0	10.5	V
AVP2	V parabola accuracy 2	(2) 2.7V in (3) 3.5V in (4) measure (5) 4.0V in	4	6.23	6.73	7.23	V
A VP3	V parabola accuracy 3	(2) 3.5V in (3) 3.5V in (4) measure (5) 4.0V in	4	20	25	30	%
A VP4	V parabola accuracy 4	(2) 4.3V in (3) 3.5V in (4) measure (5) 4.0V in	4	20	25	30	%
A VP5	V parabola accuracy 5	(2) 5.1V in (3) 3.5V in (4) measure (5) 4.0V in	4	90	100	110	%
GVP1	V parabola amplitude 1	(2) fv=70Hz, 3.2VP-P saw wave in (3) 3.5V in (4) measure (5) 1.0V in	4	0.0	0.0	0.1	VP-P
GVP2	V parabola amplitude 2	(2) fv=70Hz, 3.2VP-P saw wave in (3) 3.5V in (4) measure (5) 2.5V in	4	2.77	3.12	3.47	VP-P
Gv _{P3}	V parabola amplitude 3	(2) fv=70Hz, 3.2VP-P saw wave in (3) 3.5V in (4) measure (5) 4.0V in	4	6.26	6.56	6.86	VP-P
Fv _P 1	V para. freq. characteristics 1	(2) fv=50Hz, 3.2VP-P saw wave in (3) 3.5V in (4) measure (5) 4.0V in	4	-0.1	0.0	0.1	V
FvP2	V para. freq. characteristics 2	(2) fv=185Hz, 3.2VP-P saw wave in (3) 3.5V in (4) measure (5) 4.0V in	4	-0.1	0.0	0.1	V
V VP1	V para. Vcc. characteristics 1	(2) fv=70Hz, 3.2VP-P saw wave in (3) 3.5V in (4) measure (5) 4.0V in	4	-0.1	0.0	0.1	V
VVP2	V para. Vcc. characteristics 2	(2) fv=70Hz, 3.2VP-P saw wave in (3) 3.5V in (4) measure (5) 4.0V in	4	-0.1	0.0	0.1	٧
Dvp	V para. Vcc. temperature drift	(2) fv=70Hz, 3.2VP-P saw wave in (3) 3.5V in (4) measure (5) 4.0V in	4	-	-325	_	ppm/deg
l2	Pin2 input current	(2) 3.5V in, measure	2	-5.0	-0.4	-0.1	μА
lз	Pin3 input current	(3) 3.5V in, measure	3	-5.0	-0.4	-0.1	μА
l5	Pin5 input current	(5) 2.5V in, measure	5	-5.0	-0.4	-0.1	μΑ


DYNAMIC FOCUS


SWITCH AND VOLTAGE CONDITION

							5	Switch)												٧	olta(ge (\	V)				
Symbol	SW2	S	W3	SV	V 5	SW		SW10		V15	sw	17	sv	V19	SW	20	Vo	C	V2	1	V 5	ΓV		V.	15	V 1	7	V19
Іссн	а		а	í	a	а		b		a	b			а	a	l	12	.0	3.5	2	2.5	2	.5	3.	.0	C)	2.0
Iccv								а							b	,												
VREF															a	ì												
DREF											\	,										,	V				1	V
VIL											а	Į										4	.0			-	-	3.2
VIH												,										١ ،	,			1	1	\downarrow
lıL											b)										2	.5			C)	2.0
Іін											V	,										\	,			5.	0	<u> </u>
Tw											a	Į										4	.0	١	,	_	-	3.2
T _D 1																								(
T _{D2}																								1.				
Трз																								4				
D D							\perp			₩	↓										1	<u> </u>	∤	3		_ \	,	₩_
l15							\perp		+	b	b										1	2	.5	-		C)	2.0
VHP						$\sqcup \bot$	\perp		1	a	a	l							$oxed{oxed}$		1_			3	.0	-	-	4.0
FHP1							_	_													_							
FHP2							_		1								*	,										
VVHP1							4	_	-								11				╄							
VVHP2							_										12				_							
DHP			-				_		-								12	.0	_		_							<u> </u>
SHP1							+	_	-												\vdash							4.0
SHP2	\vdash		-				+	-													_							2.0
SHP3			-				+	_	-								-		\vdash		+	1	<u> </u>					0 4.0
GнР1	-		1				+	-	+											-	+	2						4.0
GнР2	\vdash		+				+	-	+										+		╁	4						
DLI			1				+	-	1			,									+	 	L.					4.0
l6			+			b	+	+	+		b	· · · · · · · · · · · · · · · · · · ·	Η,				\dashv				+	<u> </u>				- 1	,	2.0
I19			1			a	+	-			Ť			b b							$\downarrow -$.5			ì		
AVP1			1			T	+							a					\rightarrow		¥ 1.0							2.0
A VP2							+												1.9		Τ							Т
A VP3							\top												2.7		T							
AVP4							1												4.3									
AVP5	\downarrow						\top												5.1		\downarrow							
GVP1	b																		_	-	1.0							
GvP2							\top													1	2.5							
Gv _{P3}																				_ 4	1.0							
FVP1																												
FVP2																												
V VP1							$oxed{oxed}$										11											
V VP2							$oxed{oxed}$										12	.5										
DVP	 																12	.0			V							
l 2	С		V																3.5	2	2.5							
Із	a		b		,																V							
l 5		1	а	1)			₩		₩	↓		١ ،	V	 	,	l ↓	,			_	\	V	١,	 	↓	,	¥

DYNAMIC FOCUS

INPUT SIGNAL

ELECTRICAL CHARACTERISTICS TEST METHOD

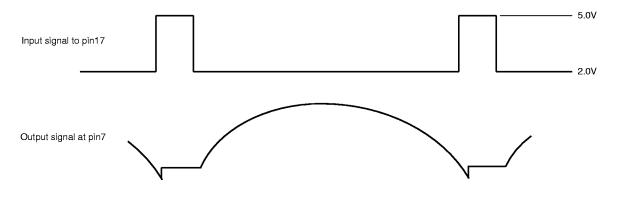
Іссн Circuit current1

Measure the input current to pin10.

Iccv Circuit current2

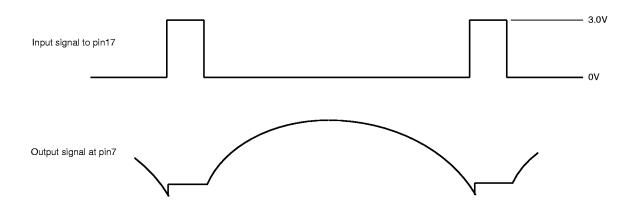
Measure the input current to pin20.

VREF Reference voltage output

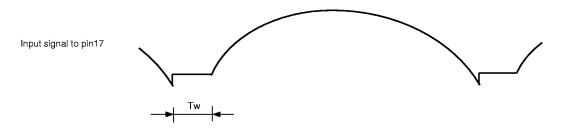

Measure the output voltage at pin14.

DREF Reference voltage temperature drift

Measure temperature drift of pin14. (-20°C to 85°C)

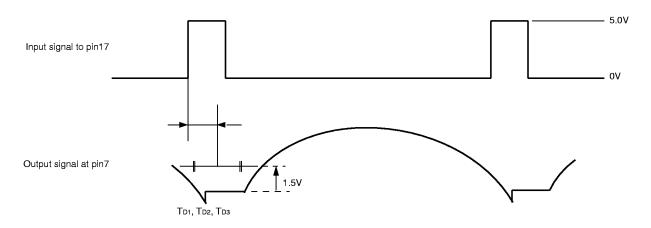

VIL H-pulse low input range

Input horizontal pulse which low level is 2V in pin17 and confirm output horizontal signal at pin7.


Vін H-pulse high input range

Input horizontal pulse which high level is 3V in pin17 and confirm output horizontal signal at pin7.

Tw H parabola width


Measure the time width of retrace period at pin 7.

T_{D1} H parabola delay1, T_{D2} H parabola delay2,

TD3 H parabola delay3

Measure the delay time from rise time of input signal to middle point of raise waveform point and down waveform point which voltage is retrace voltage +1.5V when the voltage of pin15 is 0V, 1.5V, and 4V.

DYNAMIC FOCUS

DD Delay temperature drift

Measure the temperature drift of the delay time. (-20°C to 85°C).

I₁₅ Pin₁₅ input current

Measure the input current to pin15 when the voltage of pin15 is 2.5V.

VHP H parabola amplitude

Measure the amplitude of parabola waveform at pin7 and it is defined HP50kHz.

FHP1 H para. freq. characteristics1

When the frequency of input signal in pin17 is 24kHz, the amplitude of parabola waveform at pin7 is defined as HP_{24kHz}.

FHP1=HP50kHz - HP24kHz

FHP2 H para. freq. characteristics2

When the frequency of input signal in pin17 is 120kHz, the amplitude of parabola waveform at pin7 is defined as HP120KHz.

FHP2=HP50kHz - HP120kHz

VVHP1 H para. Vcc. characteristics1

When the supply voltage of pin10, 20 is 11.5V, the amplitude of parabola waveform at pin7 is defined as HP11.5V.

VVHP1=HP50kHz - HP11.5V

VVHP2 H para. Vcc. characteristics2

When the supply voltage of pin10, 20 is 12.5V, the amplitude of parabola waveform at pin7 is defined as HP12.5V.

VVHP2=HP50kHz - HP12.5V

DHP H para. size. temperature drift

Measure the temperature drift of HP50kHz. (-20°C to 85°C)

SHP1 H para. size. control1

Measure the amplitude of parabola waveform at pin7 and it is defined as HP19 4.0V.

SHP2 H para. size. control2

The amplitude of parabola waveform at pin7 is defined as HP19 2.0V.

SHP2=
$$\frac{\text{HP19 2.0V}}{\text{HP19 4.0V}} \times 100 (\%)$$

SHP3 H para. size. control3

The amplitude of parabola waveform at pin7 is defined as HP19 ov.

SHP3=
$$\frac{HP_{19 \text{ oV}}}{HP_{19 \text{ 4.0V}}} \times 100 \text{ (\%)}$$

Gнр1 H para. gain control1

Measure the amplitude of parabola waveform at pin7 and it is defined as HP6 1 ov

GHP2 H para. gain control2

The amplitude of parabola waveform at pin7 is defined as HP19 2.5V.

$$GHP2 = \frac{HP6 \ 2.0V - HP6 \ 1.0V}{1.5}$$

GHP3 H para. gain control3

Measure the amplitude of parabola waveform at pin7 (Limit level).

D⊔ H para. limit size temperature drift

Measure temperature drift of GHP3. (-20°C to 85°C)

le Pin6 input current

Measure the input current to pin6 when voltage of pin6 is 2.5V.

I19 Pin19 input current

Measure the input current to pin19 when voltage of pin19 is 2V.

AVP1 V parabola accuracy1

Measure the output voltage at pin4 and it is defined as VP2 3.5V.

AVP2 V parabola accuracy2

The output voltage at pin4 is defined as VP2 1.9V.

AVP3 V parabola accuracy3

The output voltage at pin4 is defined as VP2 2.7V.

$$AVP3 = \frac{VP2 \ 3.5V - VP2 \ 2.7V}{VP2 \ 3.5V - VP2 \ 1.9V} \times 100 \ (\%)$$

Avp4 V parabola accuracy4

The output voltage at pin4 is defined as VP2 4.3V.

$$AVP4 = \frac{VP2 \ 3.5V - VP2 \ 4.3V}{VP2 \ 3.5V - VP2 \ 1.9V} \times 100 \ (\%)$$

Avps V parabola accuracy5

The output voltage at pin4 is defined as VP2 5.1V.

$$AVP5 = \frac{VP2 \ 3.5V - VP2 \ 5.1V}{VP2 \ 3.5V - VP2 \ 1.9V} \times 100 \ (\%)$$

GVP1 V parabola amplitude1, GVP2 V parabola amplitude2, GVP3 V parabola amplitude3

Measure the amplitude of parabola waveform at pin4 when the voltage of pin5 is 0V, 2.5V, and 4V.

When the voltage of pin5 is 4V, the amplitude of parabola waveform is defined as VP_{70Hz} .

DYNAMIC FOCUS

FVP1 V para. freq. characteristics1

When the frequency of input signal in pin2 is 50Hz, the amplitude of parabola waveform at pin4 is defined as VP_{50Hz}.

FVP1=VP70Hz - VP50Hz

FVP2 V para. freq. characteristics2

FVP2=VP70Hz - VP185Hz

Vvp1 V para. Vcc. characteristics1

When the voltage of pin10, 20 is 11.5V, the amplitude of parabola waveform is defined as VP11.5V.

VVP1=VP70Hz - VP11.5V

VvP2 V para. Vcc. characteristics2

When the voltage of pin10, 20 is 12.5V, the amplitude of parabola waveform is defined as VP12.5V.

VvP2=VP70Hz - VP12.5V

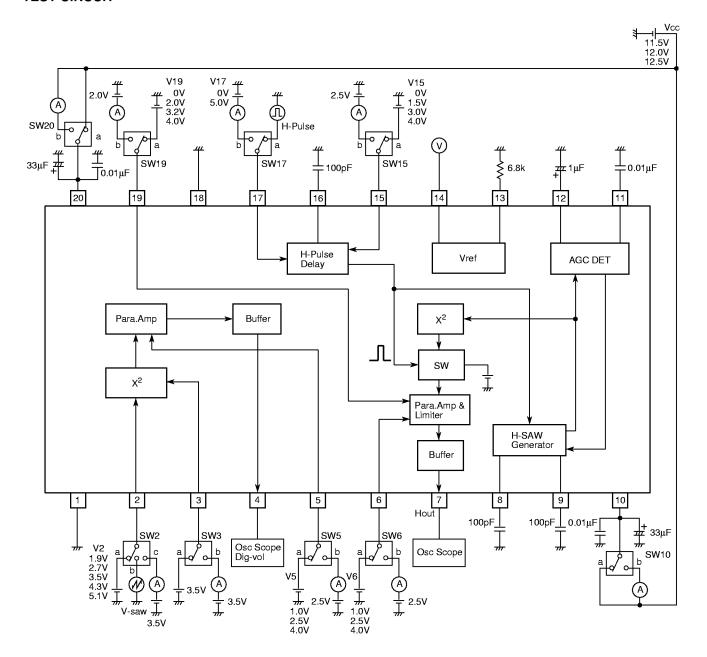
DVP V para. temperature drift

Measure temperature drift of VP70Hz. (-20°C to 85°C)

l₂ Pin₂ input current

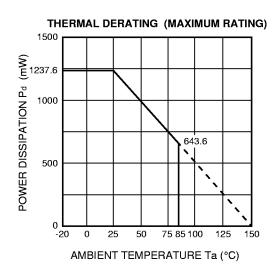
Measure the input current to pin2 when the voltage of pin2 is 3.5V.

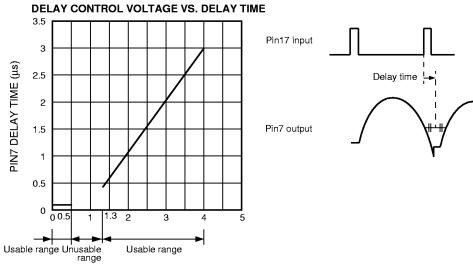
13 Pin3 input current

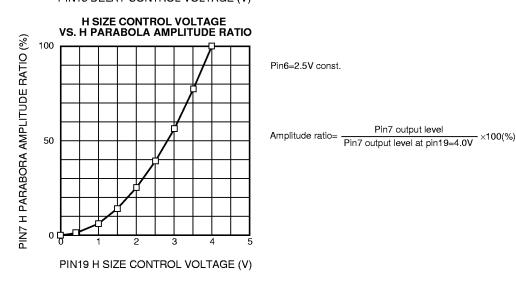

Measure the input current to pin3 when the voltage of pin3 is 3.5V.

Is Pin5 input current

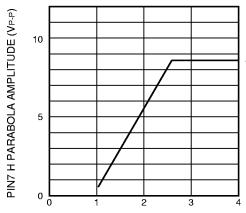
Measure the input current to pin5 when the voltage of pin5 is 3.5V.


DYNAMIC FOCUS

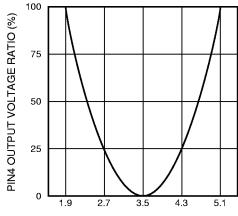

TEST CIRCUIT


Units Resistance : Ω Capacitance : F

TYPICAL CHARACTERISTICS



H GAIN CONTROL VOLTAGE VS. H PARABORA AMPLITUDE

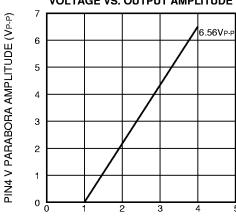


8.76V_{P-P} (Limiting level)

Pin19=4.0V const.

PIN6 H GAIN CONTROL VOLTAGE (V)

V PARA DC OUTPUT VOLTAGE RATIO

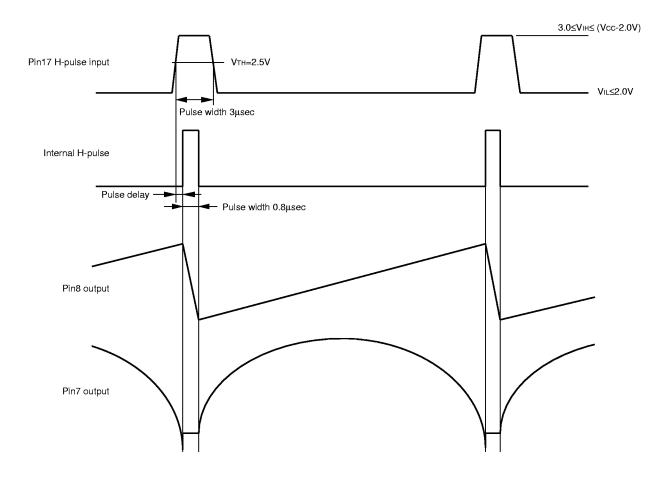


Pin3=3.5V const. Pin5=4.0V const.

Output ratio= Pin4out (Pin2=3.5V)-Pin4out Pin4out (Pin2=3.5V)-Pin4out (Pin2=1.9V) ×100 (%)

PIN2 INPUT VOLTAGE (V)

V PARA AMP GAIN CONTROL VOLTAGE VS. OUTPUT AMPLITUDE

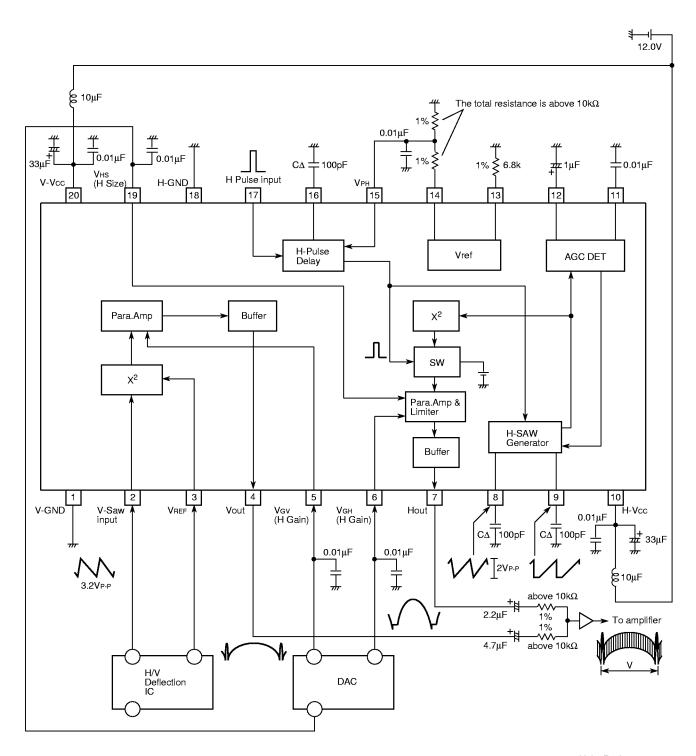

Pin2 3.2V_{P-P} sawtooth wave input

PIN5 V PARA AMP GAIN CONTROL VOLTAGE (V)

DYNAMIC FOCUS

TIMING DIAGRAM

HORIZONTAL BLOCK



VERTICAL BLOCK

DYNAMIC FOCUS

APPLICATION EXAMPLE

Units Resistance : Ω Capacitance : F

DYNAMIC FOCUS

DESCRIPTION OF PIN

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
1	V-GND	_		GND of vertical block
2	Vsawi	3.5V	V-Vcc 2 1k V-GND	Vertical sawtooth wave input pin.
3	Vsawref	3.5V	V-Vcc 3 1k V-GND	Vertical reference voltage input pin. (3.5V)
4	Vout	10V (Peak)	V-Vcc 200	Vertical parabola wave output pin. Peak voltage=10V(fixed) Amplitude is possible to control by pin5
5	Vgv	1.0 to 4.0V	V-Vcc 50µA	Vertical parabola wave gain control voltage input pin. Input voltage range is 1.0 to 4.0V.
6	Vgн	1.0 to 4.0V	H-Vcc 6 1k H-GND	Horizontal parabola wave gain control voltage input pin. Input voltage range is 1.0 to 4.0V.

DYNAMIC FOCUS

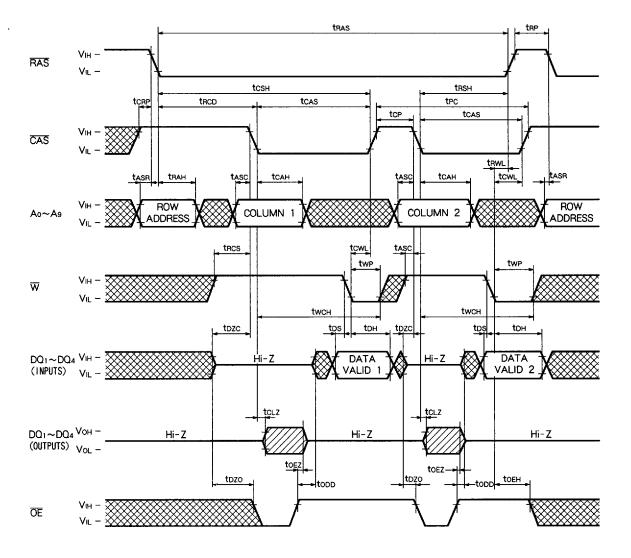
DESCRIPTION OF PIN (cont.)

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
7	Hout	9.2V (Peak)	H-Vcc 200 1mA	horizontal parabola wave output pin. Peak voltage=9.2V (fixed) Amplitude is possible to control by pin6 and pin19.
8	Cret	7.1V (Top) 4.9V (Bottom)	H-Vcc 8 0.25mA 1.5k 60µА	Connection pin of horizontal retrace capacitor. Recommended capacitance is 100pF.
9	Ctrc	7.1V (Top) 4.9V (Bottom)	9 2k 2k 510 70µA	Connection pin of horizontal trace capacitor. Recommended capacitance is 100pF.
10	H-Vcc	12.0V		Vcc of horizontal block.
11	CAGCr	2.5V	H-Vcc 11 1.5k	Connection pin of horizontal sawtooth wave AGC retrace capacitor. Recommended capacitance is 0.01µF.

DYNAMIC FOCUS

DESCRIPTION OF PIN (cont.)

Pin No.	Name Name	DC voltage (V)	Peripheral circuit of pins	Description of function
12	CAGC	4.0V	H-Vcc 7.5k	Connection pin of horizontal AGC capacitor. Recommended capacitance is 1μF.
13	VREFR	1.28V	H-Vcc 4k	Connection pin of reference current source resister. Recommended resistance is 6.8kΩ.
14	VREFO	7.0V	H-Vcc 14 10р 50µА	Reference voltage output for horizontal pulse delay circuit. Should be connect more than $10k\Omega$ external resister.
15	VРН	0 to 0.5V 1.3 to 4.0V	H-Vcc ———————————————————————————————————	Delay adjustment voltage input pin of horizontal pulse. Input voltage range is 1.3 to 4.0V. At 0 to 0.5V, delay is minimized. (0.5 to 1.3V is unusable range.)
16	Chpd	0V (Bottom)	H-Vcc 2k 2k 50μA	Connection pin of horizontal pulse delay timing capacitor. Recommended capacitance is 100pF. O.5 to 5.0VP-P


DYNAMIC FOCUS

DESCRIPTION OF PIN (cont.)

Pin No.	Name	DC voltage (V)	Peripheral circuit of pins	Description of function
17	HPin	_	H-Vcc 50μA	Horizontal pulse input pin. Low input level is less than 2.0V, and high is 3.0 to 10V (at Vcc=12V).
18	H-GND	_		GND of horizontal block
19	VHS	_	H-Vcc 550µА	Horizontal size control voltage input pin.Input Voltage range is 0 to 4V.
20	V-Vcc	12.0V		Vcc of vertical block

FAST PAGE MODE 4194304-BIT(1048576-WORD BY 4-BIT)DYNAMIC RAM

Fast Page Mode Write Cycle (Delayed Write)

