M52354FP

ADAPTIVE-TYPE Y/C SEPARATION

DESCRIPTION

The M52354FP is a semiconductor integrated circuit for large-sized high-resolution color TV and new-standard VCR (S-VHS, Hi8). Low-system-cost Y/C separation and luminance signal noise canceller (LNC, for VCR playback) are built-in single-chip.

FEATURES

- By attaching 1H delay line externally, Y/C separation and noise canceller are realized. So costs can be cut.
- Switching between comb filter and band pass filter is conducted by pattern recognition. This IC shows excellent Y/C separation characteristics including few dot interference and color dropping.
- Differences from the M52099P
 - Switching between adaptive-type comb and simple comb type is possible by pin 8 control. (M52099P: power save)
 - (2) Correlation and non-correlation thresholds are distinguished by pin 4 control. The threshold variable range of the M52354FP is wider than that of the M52099P.

Pin 4 Lo (> 1.2V) : easily recognized as correlation threshold

Pin 4 Hi : easily recognized as non - correlation threshold

(3) By lowering the gain of amplifier of pin 10 input, this IC can be used with CCD.

APPLICATION

VCR (VHS, beta, 8mm VCR), TV (for NTSC)

RECOMMENDED OPERATING CONDITION

Rated supply voltage ······5.0V

M52354FP

ADAPTIVE-TYPE Y/C SEPARATION

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
Vcc	Supply voltage	6. 0	V
Pd	Power dissipation	900	mW
Topr	Operating temperature	-20~+75	જ
Tstg	Storage temperature	-40~+125	ဗ
Kθ	Thermal derating $(Ta \ge 25 \%)$	9. 0	m₩/℃

ELECTRICAL CHARACTERISTICS

Symbol	Symbol Parameter Test Test conditions		Test conditions		Limits		Unit
	1 arameter	point	Took oor laktoris	Min.	Тур.	Max.	Onit
AMP1			T	T			
A1G	Gain	Ø	@33.58MHz 0.15Vp.pCW LIMOFF @GND @Vcc	5. 1	6. 6	7. 1	dB
Alfd	Lower frequency characteristics	Ø	12200kHz 3.58MHz 0.15Vp.pCW LIMOFF ●GND ②VCC	-4.5	-3.0	-1.5	dB
A1 _{fu}	Upper frequency characteristics	Ø	133.58MHz 0.15Vp.p 0.45Vp.pCW LIMOFF ⊕GND ②VCC	-2.5	-1.0	-0.5	dB
A1L	Linearity	Ø	@10MHz 3.58MHz 0.15Vp.pCW LIMOFF @GND @Vcc	95	100	105	%
AMP2			1		1	<u> </u>	1
A2 _G	Gain	O	®3.58MHz 50mVp.pCW LIMOFF ®GND	3. 6	5. 1	6.6	dB
A2fd	Lower frequency characteristics	Ð	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-4.5	-3.0	-1.5	dB
A2fu	Upper frequency characteristics	•	@10MHz 3.58MHz 80mVp-pCW	-2.3	-0.8	0.7	dB
A2L	Linearity	Ø	103.58MHz 80mVp.pCW LIMOFF 4GND	95	100	105	%
AMP3					·		1
A3 _G	Gain	Ø	②3.58MHz 0.15V _{P-P} CW LIMOFF ③GND	-1.4	0. 6	2. 6	dB
A3fd	Lower frequency characteristics	Ø	1 2200kHz 3.58MHz 0.15VP-PCW LIMOFF	-4.5	-3.0	-1.5	dB
A3 _{fu}	Upper frequency characteristics	•	123.58MHz 10MHz 0.15VP-PCW LIMOFF	-3.1	-1.6	-0.5	dB
A3L	Linearity	Ø	123.58MHz 0.15&0.75Vp.pCW LIMOFF (4)GND	95	100	105	%
AMP4							1
A4G1	Gain 1	2	1 100kHz 0.5VP-PCW	4. 6	5. 6	6. 6	dB
A4f1	Frequency characteristics 1	2	1 100kHz 5 MHz 0.5VP-PCW	-0.5	0.0	0. 5	dB
A4L1	Linearity 1	2	@100kHz 0.5&1.0Vp-pCW	95	100	105	%
A4 _{G2}	Gain 2	2	⑤3.58MHz 0.3Vp-pCW	4. 6	5. 6	6. 6	dB
A4f2	Frequency characteristics 2	2	\$100kHz 3.58MHz 0.3Vp_PCW	-0.5	0.0	0. 5	dB
A4L2	Linearity 2	2	⑤3.58MHz 0.3&0.6VP_PCW	95	100	105	%
Y-COMB /	AMP						-
YC _{G1}	Gain 1	2		6. 6	8. 6	10.6	dB
YCf1	Frequency characteristics 1	2	1000kHz 3.58MHz 50mVp.pCW ④GND	-1.5	0	1.5	dΒ
YC _{L1}	Linearity	2	103.58MHz 50mVp.p 240mVp.pCW ④GND	95	100	105	%
YC _{G2}	Gain 2	2		2. 7	4. 2	5. 7	dB

Note 1. Each parameter is measured at Ta = 25 °C and supply voltage = 5.00VDC.

2. + current is input to pin.

ELECTRICAL CHARACTERISTICS (cont.)

Symbol	Parameter	Test Conditions		Limits			Unit
- Cyllibol	r arameter	point	rest conditions	Min.	Тур.	Max.	Unit
YC _{f2}	Frequency characteristics 2	2	10100kHz 5 MHz 150mVp.pCW	-1.5	0	1.5	dB
YCL2	Linearity 2	2		95	100	105	%
LIM			<u> </u>			1	.1
L ₁	LIM characteristics 1	7	17 1 MHz 0.2 V P.PCW @GND @VCC © 5 V @VCC/GND Change in each case.	-1.0	0	1.0	dB
L ₂	LIM characteristics 2	•	17 1 MHz 0.2VP.PCW @GND @VCC 6 3 V @VCC/GND Change in each case.	-5.0	-4.0	-3.0	dB
L3	LIM characteristics 3	Ø	17 1 MHz 0.2VP.PCW 4 GND 2VCC 8 2 V 9 VCC/GND Change in each case.	-7.2	-6. 2	-5.2	dB
L4	LIM characteristics 4	7	10 1 MHz 0.2 VP.PCW @GND @VCC 10 1 V @VCC/GND Change in each case.	-20	-18	- 16	dB
L ₅	LIM characteristics 5	Ø	10 1 MHz 0.2 VP.PCW @GND QVCC © 0 V @VCC/GND Change in each case.	30	- 27	- 24	dB
Mode swite	ching		<u> </u>			l	1
TYC	Y/C selection threshold	2	1	-	0. 9	1. 2	v
TBPF	BPF selection threshold	Ø	103.58MHz 50mVp.pCW 4GND 20PEN/VCC	4. 1	4. 4	_	v
TL	LIM ON/OFF threshold	•	10 1 MHz 0.2 VP.PCW @GND 2VCC @GND @VCC/GND	2. 1	2. 4	2. 7	v
TAS	Adaptive/simple comb threshold	7	(03.58MHz 80mV _{P-P} (€5 V, (€0 V	2. 2	2, 5	2. 8	v
Others						L	L
ICC1	Circuit current	①	@2.5V @2.5V @5V @GND	17	22	27	mA

Note 1. Each parameter is measured at $Ta = 25\,^{\circ}\!\!C$ and supply voltage = 5.00VDC. 2. + current is input to pin.

ELECTRICAL CHARACTERISTICS TEST METHOD

	Parameter	Test method	Test conditions
	Gain	The amplitude at TP7 is defined as AVP-P. $A1_G = 20log \frac{A}{0.15} (dB)$	SW12=b $SW2=ONV2=5V$ $V4=0V$ $V8=5V$ $V9=0VSG12=3.58MHz, 0.15VP.PCW$
	Lower frequency characteristics	The amplitude when 200kHz is input at TP7 is defined as AVP-P and the amplitude when 3.58MHz is input is defined as BVP-P. $A1_{fd} = 20\log\frac{A}{0.15} - 20\log\frac{B}{0.15} \text{ (dB)}$	SW12=b SW 2 = 0 N V 2 = 5 V V 4 = 0 V V 8 = 5 V V 9 = 0 V SG12=200kHzand 3.58MHz 0.15Vp_PCW
AMP1	Upper frequency characteristics	The amplitude when 10MHz is input at TP7 is defined as AVP-P and the amplitude when 3.58MHz is input is defined as BVP-P. $A1_{fu} = 20\log\frac{A}{0.15} - 20\log\frac{B}{0.15} \text{ (dB)}$	SW12=b SW 2 = 0 N V 2 = 5 V V 4 = 0 V V 8 = 5 V V 9 = 0 V SG12=10MHzand 3.58MHz 0.15Vp_PCW
	Linearity	The amplitude when 0.15VP-P is input at TP7 is defined as AVP-P and the amplitude when 0.45VP-P is input is defined as BVP-P. $A1_L = \frac{B}{3 \times A} \times 100(\%)$	SW12=b SW 2=0N V 2=5 V V 4=0 V V 8=5 V V 9=0 V SG12=3.58MHz 0.15&0.45Vp.pCW
	Gain	The amplitude at TP7 is defined as AmV _{P-P} . $A2_G = 20\log \frac{A}{80} (dB)$	SW10=b V 4 = 0 V V 8 = 5 V V 9 = 0 V SG10=3.58MHz 50mV _{P-P} CW
2	Lower frequency characteristics The amplitude when 200kHz is input at TP defined as AVP-P and the amplitude when 3.58MHz is input is defined as BVP-P. $A2_{fd} = 20\log\frac{A}{80} - 20\log\frac{B}{80} \ (dB)$		SW10=b V 4 = 0 V V 8 = 5 V V 9 = 0 V SG10=220kHz&3.58MHz 80mVp.pCW
AMP2	Upper frequency characteristics	The amplitude when 10MHz is input at TP7 is defined as AmVP-P and the amplitude when 3.58MHz is input is defined as BmVP-P. $A2_{1u} = 20\log\frac{A}{80} - 20\log\frac{B}{80} (dB)$	SW10=b V 4 = 0 V V 8 = 5 V V 9 = 0 V SG10=10MHz&3.58MHz 80mVp.pCW
	Linearity	The amplitude when 50mVp-p is input at TP7 is defined as AVP-P and the amplitude when 250mVp-P is input is defined as BVP-P. $A2_L = \frac{B}{3\times A}\times 100(\%)$	SW10=b V 4 = 0 V V 8 = 5 V V 9 = 0 V SG10=3.58MHz 50 & 250m V P.PCW
	Gain	The amplitude at TP7 is defined as AVP-P. $A3_G = 20 log \frac{A}{0.15} (dB)$	SW12=b V4=0V V8=5V V9=0V SG12=10MHzand 3.58MHz 0.15Vp-pCW
AMP3	Lower frequency characteristics	The amplitude when 200kHz is input at TP7 is defined as AVP-P and the amplitude when 3.58MHz is input is defined as BVP-P. $A3_{1d} = 20\log\frac{A}{0.15} - 20\log\frac{B}{0.15} \text{ (dB)}$	SW12=b V 4 = 0 V V 8 = 5 V V 9 = 0 V SG12=200kHz and3, 58MHz 0, 15Vp.pCW
	Upper frequency characteristics	The amplitude when 10MHz is input at TP7 is defined as AVP-P and the amplitude when 3.58MHz is input is defined as BVP-P. $A3_{1u} = 20\log\frac{A}{0.15} - 20\log\frac{B}{0.15} \ (dB)$	SW12=b V 4 = 0 V V 8 = 5 V V 9 = 0 V SG12=10MHz and 3.58MHz 0.15Vp.pCW

ELECTRICAL CHARACTERISTICS TEST METHOD (cont.)

	Parameter	Test method	Test conditions
AMP3	Linearity	The amplitude when 0.15VP-P is input at TP7 is defined as AVp-p and the amplitude when 0.75VP-P is input is defined as BVP-P. $A3_L = \frac{B}{5 \times A} \times 100(\%)$	SW12=b V 4 = 0 V V 8 = 5 V V 9 = 0 V SG12=3.58MHz, 0.15&0.75V _{P-P} CW
	Gain 1	The amplitude at TP2 is defined as AmV _{P-P} . $A4_{G1} = 20log \ \frac{A}{0.5} \ (dB)$	SW14 = b V 8 = 5 V SG14 = 100K Hz, 0.5V P-PCW
	Frequency characteristics 1	The amplitude when 5MHz is input at TP2 is defined as AVP-P and the amplitude when 100kHz is input is defined as BVP-P. $A4_{f1} = 20\log\frac{A}{0.5} - 20\log\frac{B}{0.5} \text{ (dB)}$	SW14 = b V 8 = 5 V SG14 = 100K Hz & 5 MHz 0.5 VP.PCW
MP4	Linearity 1	The amplitude when 0.5VP-P is input at TP2 is defined as $A\text{VP-P}$ and the amplitude when 1.0VP-P is input is defined as $B\text{VP-P}$. $A4_{L1} = \frac{B}{2\times A} \times 100(\%)$	SW14 = b V 8 = 5 V SG14 = 100K Hz 0.5&1.0V _{P-P} CW
AM	Gain 2 The amplitude at TP2 is defined as AmV _{P-P} . $A4_{G2} = 20log \frac{A}{0.3} (dB)$		SW 5 = b V 8 = 5 V SG 5 = 3.58MHz 0.3Vp-pCW
	Frequency characteristics 2	The amplitude when 5MHz is input at TP2 is defined as AVP-P and the amplitude when 100kHz is input is defined as BVP-P. $A4_{f2} = 20\log\frac{A}{0.3} - 20\log\frac{B}{0.3} \text{ (dB)}$	SW 5 = b V 8 = 5 V SG 5 = 3.58MHz 0.3VP-PCW
	Linearity 2	The amplitude when 0.3VP-P is input at TP2 is defined as AVP-P and the amplitude when 0.6VP-P is input is BVP-P. $A4_{L2} = \frac{B}{2\times A} \times 100(\%)$	SW 5 = b V 8 = 5 V SG 5 = 3.58MHz, 0.3&0.6VP_PCW
	Gain 1	The amplitude at TP2 is defined as AVP-P. $YC_{G1} = 20 \log \frac{A}{80} (dB)$	SW10=b V 4 = 0 V V 8 = 5 V SG10=3.58MHz 80mV _{P-P} CW
B AMP	Frequency characteristics 1	The amplitude when 5MHz is input at TP2 is defined as AVP-P and the amplitude when 100kHz is input is defined as BVP-P. $YC_{11}=20log\frac{A}{80}-20log\frac{B}{80}(dB)$	SW10=b V 4 = 0 V V 8 = 5 V SG10=10MHz and 3.58MHz 80mVp.pCW
Y-COMB	Linearity 1	The amplitude when 80mV_{P-P} is input at TP2 is defined as AmV _{P-P} and the amplitude when 240mV_{P-P} is input is BmV _{P-P} . $ \text{YC}_{L1} = \frac{\text{B}}{3\times\text{A}} \times 100(\%) $	SW10 = b V 4 = 0 V V 8 = 5 V SG10 = 3.58MHz 80 & 240mV _{P-P} CW
	Gain 2	The amplitude at TP2 is defined as AVP-P. $ YC_{G2} = 20log \frac{A}{0.15} (dB) $	SW12=b V 4 = 0 V V 8 = 5 V SG12=3.58MHz 0.15VP-PCW

ELECTRICAL CHARACTERISTICS TEST METHOD (cont.)

	Parameter	Test method	Test conditions
B AMP	Frequency characteristics 2	The amplitude when 5MHz is input at TP2 is defined as AVP-P and the amplitude when 100kHz is input is defined as BVP-P. $YC_{f2} = 20log \frac{A}{0.15} - 20log \frac{B}{0.15} (dB)$	SW12=b V 4 = 0 V V 8 = 5 V SG12=100K Hz & 5 MHz 0.15VP-PCW
Y-COMB	Linearity 2	The amplitude when 0.15VP-P is input at TP2 is defined as AVP-P and the amplitude when 0.45VP-P is input is defined as BVP-P. $YC_{L2} = \frac{B}{3\times A} \times 100(\%)$	SW12=b V 4 = 0 V V 8 = 5 V SG12=3.58MHz, 0.15&0.45Vp.pCW
	LIM characteristics 1	Find the variance between V9 = 5V and V9 = 0V at TP7. L ₁ = 20log Amplitude at V9 = 5V (dB)	SW12=b V 2 = 5 V V 4 = 0 V V 6 = 5 V V 9 = 5 V/0 V SG12= 1 MHz 0.2V _{P-P} CW
	LIM characteristics 2	Find the variance between V9 = 5V and V9 = 0V at TP7. $L_2 = 20log \frac{Amplitude \ at \ V9 = 5V}{Amplitude \ at \ V9 = 0V} (dB)$	SW12=b V 2 = 5 V V 4 = 0 V V 6 = 3 V V 9 = 5 V/0 V SG12= 1 MHz 0.2V _{P-P} CW
LIM	LIM characteristics 3	Find the variance between V9 = 5V and V9 = 0V at TP7. L3 = $20\log \frac{\text{Amplitude at V9} = 5\text{V}}{\text{Amplitude at V9} = 0\text{V}}$ (dB)	SW12=b V 2 = 5 V V 4 = 0 V V 6 = 2 V V 9 = 5 V/0 V SG12= 1 MHz 0.2Vp_PCW
	LIM characteristics 4	Find the variance between $V9 = 5V$ and $V9 = 0V$ at TP7. L4 = $20log \frac{Amplitude \text{ at } V9 = 5V}{Amplitude \text{ at } V9 = 0V}$ (dB)	SW12=b V 2 = 5 V V 4 = 0 V V 6 = 1 V V 9 = 5 V/0 V SG12= 1 MHz 0.2VP-PCW
	LIM characteristics 5	Find the variance between $V9 = 5V$ and $V9 = 0V$ at TP7. L ₅ = $20log \frac{Amplitude \text{ at } V9 = 5V}{Amplitude \text{ at } V9 = 0V}$ (dB)	SW12=b V 2 = 5 V V 4 = 0 V V 6 = 0 V V 9 = 5 V/0 V SG12= 1 MHz 0.2Vp.pCW
	Y/C selection threshold	Increase the voltage gradually from V4 = 0V until signal output (3.58MHz, 0.32VP-P in approx.) at TP2 ceases. V2 (V) at that time is defined as TBPF.	SW12=b Increase voltage from V4 = V0. SG12=3.58MHz 0.2Vp_pCW
switching	BPF selection threshold	Apply the same voltage as the open voltage at pin 2 to TP2. Then, increase the voltage gradually until signal output (3.58MHz, 0.17VP-P in approx.) at TP7 ceases. V2 (V) at that time is defined as TBPF.	SW 2: ON SW10=b Increase voltage from V2 = open voltage V4 = OV SG10=3.58MHz 50mVp.pCW (Note) Voltage which is lower than open voltage of pin ②should never be applied to pin ②.
Mode	LIM ON/OFF threshold	Increase the voltage gradually from $V9 = 5V$ until signal output (1MHz, 0.43VP-P in approx.) at TP7 ceases. V9 (V) at that time is defined as TL.	SW 2 = 0 N SW12 = b V 2 = 5 V V 4 = 0 V V 6 = 0 V SG12 = 1 MHz 0.2 V p.p C W
	Adaptive/simple comb threshold	Decrease the voltage gradually from $V8 = 5V$ until sine wave is output at TP7. $V8$ (V) at that time is defined as TAS.	SW10=b, SW12=a V 4 = 5 V, V 9 = 0 V SG10=3.58MHz, 80mV _{P-P} CW
	Circuit current	The current measured at I1 is defined as Icc1.	SW 1 = b V 4 = 2.5V V 6 = 2.5V V 8 = 5 V V 9 = 0 V

TEST CIRCUIT

Units Resistance : Ω

Capacitance : F

TYPICAL CHARACTERISTICS

THERMAL DERATING (MAXIMUM RATING)

TEST CIRCUIT

Units Resistance : Ω

Capacitance : F

TYPICAL CHARACTERISTICS

THERMAL DERATING (MAXIMUM RATING)

APPLICATION EXAMPLE

Units

Capacitance : F

DESCRIPTION OF PIN

Pin No.	Name	Voltage and wave information	Peripheral circuit of pins
①	Vcc	5.0VDC	_
②	Y-OUT	2.4VDC Y 1VP-P in approx.	20k 100 20k 2
3	N, C	On board, this pin is connected to ground.	_
(K-CONTR OL	2.5VDC In open state.	05.0VDC 065 μ A 20k 050 μ A 12k 2 k 3 k 3 k 3 k 3 k 3 k 3 k 3
©	C-IN	2.9VDC BURST 140mVp-p in approx.	2. 2VDC 10k 3 k 3 k 3 k 3 k 4 k 4 k 4 k 4 k 4 k 4

DESCRIPTION OF PIN (cont.)

Pin No.	Name	Voltage and wave information	Peripheral circuit of pins
©	LIMIT CONTROL	2.5VDC In open state.	5. 0 V D C → 0. 2 m A ↓
Ø	C-OUT	1.8VDC BURST 280mVP-P in approx.	700 \$ 700 100 \$ 2.5k \$ 10k 77
®	ADAPTIV E/ SIMPLE COMB	4.9VDC In open state.	50k 1 k 11k 11k 8 11k
•	LNC (Line Noise Canceller.)/ Y/C SEP	4.9VDC In open state.	9 7 k

DESCRIPTION OF PIN (cont.)

Pin No.	Name	Voltage and wave information	Peripheral circuit of pins
100	1 H DLY IN	3.1VDC BURST 70mVP-P in approx.	5. 8k 3. 1VDC 5. 8k 0. 2mA 10
0	GND	0 VDC	_
Œ	BPF IN	3.1Vpc BURST 140mVP-P in approx.	3. IVDC 5. 8k
13	N, C	On board, this pin is connected to ground.	-America
100	C-VIDEO IN	2.9VDC VIDEO 0.5VP-P in approx.	20k ≥ 14 2. 2VDC 10k 10k 3 k 0. 05mA 0. 4mA 0. 4mA