MITSUBISHI <CONTROL / DRIVER IC>

M51970L

MOTOR SPEED CONTROL

DESCRIPTION

The M51970L is a semiconductor integrated circuit designed to control the motor rotating speed.

Connection of the rotating speed detector (F-G detector) to the input keeps the motor rotating speed constant with high precision. Connection of an appropriate power transistor to the output controls a wide range of DC motors.

FEATURES

- Wide range of supply voltage2.5 18V (-20 +75°C)
 Variation coefficient of supply voltage
- •••••• ±0.1% standard (4 15V)
- •Load variation coefficient ••••••±0.1% standard
- •Temperature coefficient of rotating speed ±10 ppm/°C (standard)
 - (-20 +75°C)
- •The built-in over-shoot prevention circuit keeps the over-shoot low.
- DC drive system with minimum RFI

APPLICATION

Motor rotating control in the player, tape recorder, etc.

RECOMMENDED OPERATING CONDITIONS

Supply voltage range ······2.5 –	18V
Rated supply voltage	9V

MOTOR SPEED CONTROL

ABSOLUTE MAXIMUM RATINGS (Ta=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		18	V
I 6	Sink current into 6 pin		40	mA
I 3	Source current from ③ pin		-3	mA
PdF	Power dissipation	With printed circuit board mounted (copper foil of 4.5×5.5 cm in area, thickness of 35μ , printed circuit board of 2.0 mm in thickness)	550	mW
Kef	Thermal derating		5.5	mW / °C
Topr	Operating temperature		-20 - +75	°C
Tstg	Storage temperature		-40 — +125	°C

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=9V unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Linit
			Min.	Тур.	Max.	Unit
Vcc	Supply voltage range	Ta = -20 – +75°C	2.5	-	18	V
Icc	Circuit current	Except for output drive current	3	4.5	8	mA
Vs	Stabilized output voltage		1.8	2.0	2.2	V
Vth _②	Input threshold voltage		-50	0	50	mV
Rin	Input impedance		4.2	7.9	12	kΩ
Isc6	Output limit current	$Rsc = 27\Omega$	20	27	35	mA
Ττ	One-shot pulse width	$R\tau = 75k\Omega, C\tau = 22,000pF$	375	395	415	μs
Reg-vcc	Motor speed stability for Vcc	Vcc = 4 - 15V		±0.1		%
Reg-∟	Motor speed stability for load			±0.1		%
TCN	Motor speed stability for temperature	Ta = -20 – +75°C		±10		ppm/°C

TYPICAL CHARACTERISTICS (Ta=25°C unless otherwise noted)

Thermal derating (Maximum rating)

Ambient temperature Ta (°C)

The data on the next page was measured with the following constants in the "Application Circuit Example" given below.

R1=100k Ω , R2=30k Ω , CF1=1 μ F, CF2=4.7 μ F, RF=4.7k Ω , R τ =75k Ω , C τ =22,000pF, Rsc=56 Ω , number of tachogenerator poles; 10 poles. Motor speed - ambient temperature characteristics is measured with R τ and C τ put out of the temperature test chamber.

MOTOR SPEED CONTROL

Rotating speed–Supply voltage characteristics

APPLICATION CIRCUIT EXAMPLE

Motor rotating speed control circuit

Circuit current-Supply voltage characteristics

Rotating speed–Motor torque characteristics

M51970L

(Note 1) How to determine $R\tau$ and $C\tau$

This constant determines the motor rotating speed. If the motor rotating speed and the number of poles in the tacho-generator are assumed to be N and P, respectively, the following relational expression is generally established. Putting R τ in the range of 10k Ω to 500k Ω , select the constant according to the required rotating speed.

$$\mathsf{NP} \coloneqq \frac{1}{1.17\mathsf{R}\tau\,\mathsf{C}\tau}$$

Tacho-generator output frequency– Connection resistance characteristics of pin(1)

Connection resistance $\mathsf{R}\tau$ (k\Omega) at pin(1)

(Note 2) How to determine RSC

According to the relation with maximum current ISC flowing to pin($\hat{\mathbf{s}}$), the following relational expression is generally established. Set ISC in such a way that the value cannot exceed the maximum rated value of the power dissipation of the M51970L when the supply voltage and temperature arrive at their maximum values.

$$Isc = \frac{0.7(V)}{Rsc}$$

Maximum drive current at pin(6) –

current limit resistance characteristics

(Note 3) How to determine CF1, CF2 RF Select CF1 and CF2 RF according to the inertia of motor and required rising characteristics.