

1Mb (128K x 8) ZEROPOWER[®] SRAM

- INTEGRATED LOW POWER SRAM, POWER-FAIL CONTROL CIRCUIT and BATTERY
- CONVENTIONAL SRAM OPERATION; UNLIMITED WRITE CYCLES
- 10 YEARS of DATA RETENTION in the ABSENCE of POWER
- AUTOMATIC POWER-FAIL CHIP DESELECT and WRITE PROTECTION
- WRITE PROTECT VOLTAGES (V_{PFD} = Power-fail Deselect Voltage):
 - $-M48Z128: 4.50V \le V_{PFD} \le 4.75V$
 - $M48Z128Y: 4.20V \le V_{PFD} \le 4.50V$
- BATTERY INTERNALLY ISOLATED UNTIL POWER IS APPLIED
- PIN and FUNCTION COMPATIBLE with JEDEC STANDARD 128K x 8 SRAMs

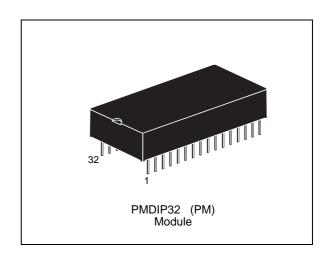
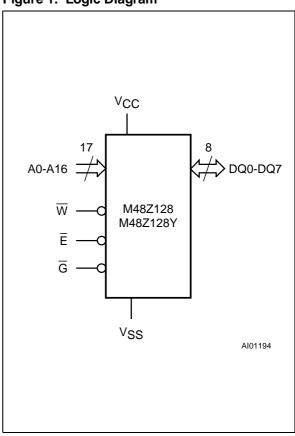


Figure 1. Logic Diagram


DESCRIPTION

The M48Z128/128Y ZEROPOWER[®] RAM is a non-volatile 1,048,576 bit Static RAM organized as 131,072 words by 8 bits. The device combines an internal lithium battery, a CMOS SRAM and a control circuit in a plastic 32 pin DIP Module.

The ZEROPOWER RAM replaces industry standard SRAMs. It provides the nonvolatility of PROMs without any requirement for special write timing or limitations on the number of writes that can be performed.

Table 1. Signal Names

_				
A0-A16	Address Inputs			
DQ0-DQ7	Data Inputs / Outputs			
E Chip Enable				
G	Output Enable			
W	Write Enable			
V _{CC}	Supply Voltage			
Vss	Ground			

January 1998 1/12

Table 2. Absolute Maximum Ratings (1)

Symbol	Parameter	Value	Unit
T _A	Ambient Operating Temperature	0 to 70	°C
T _{STG}	Storage Temperature (V _{CC} Off)	-40 to 70	°C
T _{BIAS}	Temperature Under Bias	-10 to 70	°C
T _{SLD} (2)	Lead Soldering Temperature for 10 seconds	260	°C
V _{IO}	Input or Output Voltages	-0.3 to 7	V
Vcc	Supply Voltage	-0.3 to 7	V

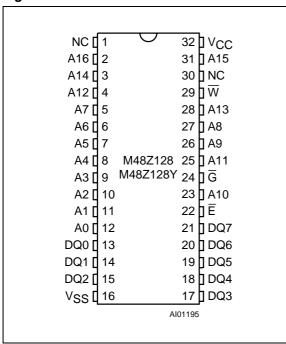

Notes: 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to the absolute maximum rating conditions for extended periods of time may affect reliability.

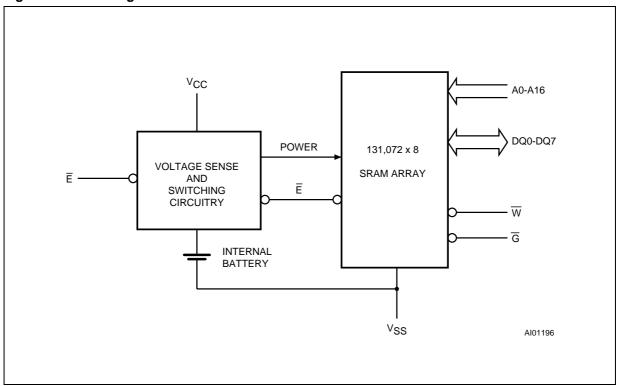
Table 3. Operating Modes

Mode	V _{CC}	Ē	G	w	DQ0-DQ7	Power
Deselect		V_{IH}	Х	Х	High Z	Standby
Write	4.75V to 5.5V or	V _{IL}	Х	V _{IL}	D _{IN}	Active
Read	4.5V to 5.5V	VIL	V _{IL}	V _{IH}	D _{OUT}	Active
Read		VIL	ViH	ViH	High Z	Active
Deselect	V _{SO} to V _{PFD} (min)	Х	Х	Х	High Z	CMOS Standby
Deselect	≤V _{SO}	Х	Х	Х	High Z	Battery Back-up Mode

Note: $X = V_{IH}$ or V_{IL} ; $V_{SO} = Battery Back-up Switchover Voltage.$

Figure 2. DIP Pin Connections

DESCRIPTION (cont'd)


The M48Z128/128Y has its own Power-fail Detect Circuit. The control circuitry constantly monitors the single 5V supply for an out of tolerance condition. When V_{CC} is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operations brought on by low V_{CC} . As V_{CC} falls below approximately 3V, the control circuitry connects the battery which sustains data until valid power returns.

READ MODE

The M48Z128/128Y is in the Read Mode whenever \overline{W} (Write Enable) is high and \overline{E} (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 1,048,576 locations in the static storage array. Thus, the unique address specified by the 17 Address Inputs defines which one of the 131,072 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within Address Access time (t_{AVQV}) after the last address input signal is stable, providing that the \overline{E} and \overline{G} (Output Enable) access times are also sat-

^{2.} Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds). *CAUTION:* Negative undershoots below –0.3 volts are not allowed on any pin while in the Battery Back-up mode.

Figure 3. Block Diagram

isfied. If the \overline{E} and \overline{G} access times are not met, valid data will be available after the later of Chip Enable Access time (t_{ELQV}) or Output Enable Access Time (t_{GLQV}). The state of the eight three-state Data I/O signals is controlled by \overline{E} and \overline{G} . If the outputs are activated before t_{AVQV} , the data lines will be driven to an indeterminate state until t_{AVQV} . If the Address Inputs are changed while \overline{E} and \overline{G} remain low, output data will remain valid for Output Data Hold time (t_{AXQX}) but will go indeterminate until the next Address Access.

WRITE MODE

The M48Z128/128Y is in the Write Mode whenever \overline{W} and \overline{E} are active. The start of a write is referenced from the latter occurring falling edge of \overline{W} or \overline{E} . A write is terminated by the earlier rising edge of \overline{W} or \overline{F}

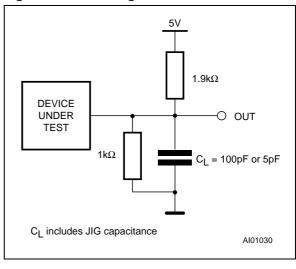

The addresses must be held valid throughout the cycle. \overline{E} or \overline{W} must return high for minimum of t_{EHAX} from \overline{E} or t_{WHAX} from \overline{W} prior to the initiation of another read or write cycle. Data-in must be valid t_{DVWH} prior to the end of write and remain valid for t_{WHDX} or t_{EHDX} afterward. \overline{G} should be kept high during write cycles to avoid bus contention; although, if the output bus has been activated by a low on \overline{E} and \overline{G} , a low on \overline{W} will disable the outputs t_{WLQZ} after \overline{W} falls.

Table 4. AC Measurement Conditions

Input Rise and Fall Times	≤ 5ns
Input Pulse Voltages	0 to 3V
Input and Output Timing Ref. Voltages	1.5V

Note that Output Hi-Z is defined as the point where data is no longer driven.

Figure 4. AC Testing Load Circuit

477

Table 5. Capacitance (1, 2)

 $(T_A = 25 \, {}^{\circ}C, f = 1 \, MHz)$

Symbol	Parameter Test Condition Min		Max	Unit	
C _{IN}	Input Capacitance	$V_{IN} = 0V$		10	pF
C _{IO} (3)	Input / Output Capacitance	V _{OUT} = 0V		10	pF

Notes: 1. Effective capacitance measured with power supply at 5V. 2. Sampled only, not 100% tested. 3. Outputs deselected

Table 6. DC Characteristics

 $(T_A = 0 \text{ to } 70^{\circ}\text{C}; V_{CC} = 4.75\text{V to } 5.5\text{V or } 4.5\text{V to } 5.5\text{V})$

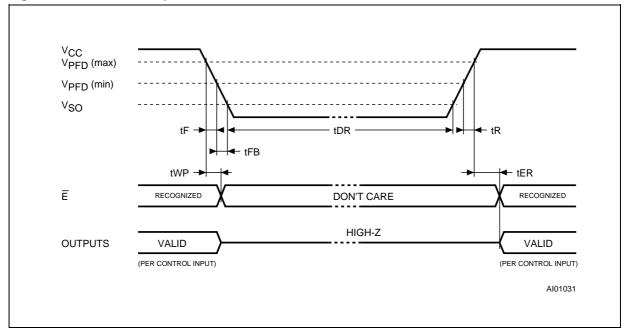
Symbol	Parameter	Test Condition	Min	Max	Unit
I _{LI} ⁽¹⁾	Input Leakage Current	$0V \le V_{IN} \le V_{CC}$		±1	μΑ
I _{LO} ⁽¹⁾	Output Leakage Current	0V ≤ V _{OUT} ≤ V _{CC}		±1	μΑ
Icc	Supply Current	$\overline{E} = V_{IL}$, Outputs open		105	mA
I _{CC1}	Supply Current (Standby) TTL	E = V _{IH}		7	mA
I _{CC2}	Supply Current (Standby) CMOS	$\overline{E} \ge V_{CC} - 0.2V$		4	mA
V _{IL}	Input Low Voltage		-0.3	0.8	V
V _{IH}	Input High Voltage		2.2	V _{CC} + 0.3	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4	V
Voh	Output High Voltage	I _{OH} = -1mA	2.4		V

Note: 1. Outputs deselected.

Table 7. Power Down/Up Trip Points DC Characteristics $^{(1)}$ $(T_A=0\ to\ 70^{\circ}C)$

Symbol	Parameter	Min	Тур	Max	Unit
V_{PFD}	Power-fail Deselect Voltage (M48Z128)	4.5	4.6	4.75	V
V_{PFD}	Power-fail Deselect Voltage (M48Z128Y)	4.2	4.3	4.5	V
V _{SO}	Battery Back-up Switchover Voltage		3		V
t _{DR} ⁽²⁾	Data Retention Time	10			YEARS

Notes: 1. All voltages referenced to V_{SS}. 2. At 25°C


Table 8. Power Down/Up Mode AC Characteristics

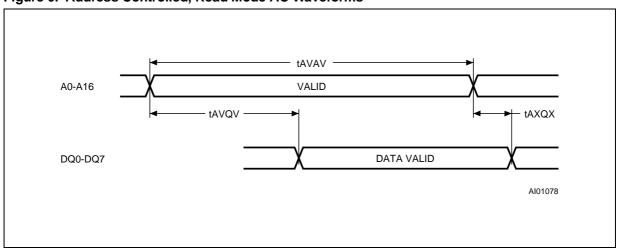
 $(T_A = 0 \text{ to } 70^{\circ}\text{C})$

Symbol	Parameter	Min	Max	Unit
t _F ⁽¹⁾	V _{PFD} (max) to V _{PFD} (min) V _{CC} Fall Time	300		μs
t _{FB} (2)	V _{PFD} (min) to V _{SO} V _{CC} Fall Time	10		μs
twp	Write Protect Time from V _{CC} = V _{PFD}	40	150	μs
t _R	V _{SO} to V _{PFD} (max) V _{CC} Rise Time	0		μs
ter	E Recovery Time	40	120	ms

Notes: 1. V_{PFD} (max) to V_{PFD} (min) fall time of less than t_F may result in deselection/write protection not occurring until 200 μs after V_{CC} passes V_{PFD} (min).

Figure 5. Power Down/Up Mode AC Waveforms

^{2.} V_{PFD} (min) to V_{SO} fall time of less than t_{FB} may cause corruption of RAM data.


Table 9. Read Mode AC Characteristics

 $(T_A = 0 \text{ to } 70^{\circ}\text{C}; V_{CC} = 4.75\text{V to } 5.5\text{V or } 4.5\text{V to } 5.5\text{V})$

			M48Z128 / M48Z128Y							
Symbol	Parameter	-70 Min Max		-70 -85		-70 -85 -120		-120		Unit
				Min	Max	Min	Max			
t _{AVAV}	Read Cycle Time	70		85		120		ns		
t _{AVQV} (1)	Address Valid to Output Valid		70		85		120	ns		
telqv (1)	Chip Enable Low to Output Valid		70		85		120	ns		
t _{GLQV} (1)	Output Enable Low to Output Valid		35		45		60	ns		
t _{ELQX} (2)	Chip Enable Low to Output Transition	5		5		5		ns		
t _{GLQX} (2)	Output Enable Low to Output Transition	5		5		5		ns		
t _{EHQZ} (2)	Chip Enable High to Output Hi-Z		30		35		45	ns		
t _{GHQZ} (2)	Output Enable High to Output Hi-Z		20		25		35	ns		
t _{AXQX} (1)	Address Transition to Output Transition	5		10		10		ns		

Notes: 1. C_L = 100pF (see Figure 4). 2. C_L = 5pF (see Figure 4)

Figure 6. Address Controlled, Read Mode AC Waveforms

Note: Chip Enable (\overline{E}) and Output Enable (\overline{G}) = Low, Write Enable (\overline{W}) = High.

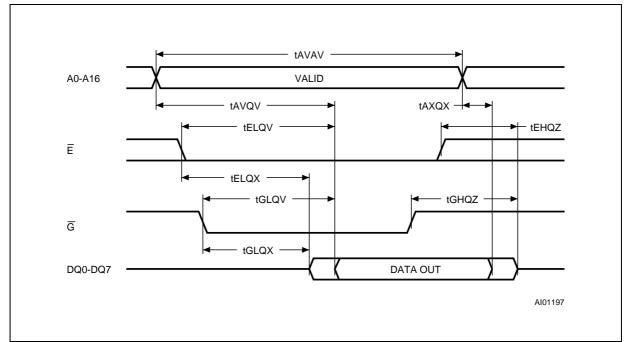


Figure 7. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms

Note: Write Enable (\overline{W}) = High.

DATA RETENTION MODE

With valid V_{CC} applied, the M48Z128/128Y operates as a conventional BYTEWIDETM static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself twp after V_{CC} falls below V_{PFD}. All outputs become high impedance, and all inputs are treated as "don't care."

If power fail detection occurs during a valid access, the memory cycle continues to completion. If the memory cycle fails to terminate within the time t_{WP} , write protection takes place. When Vcc drops below V_{SO} , the control circuit switches power to the internal energy source which preserves data.

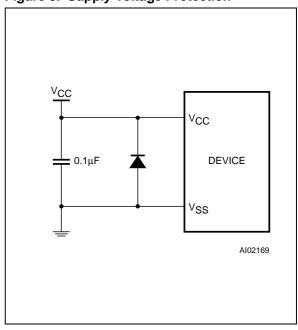
The internal coin cell will maintain data in the M48Z128/128Y after the initial application of V_{CC} for an accumulated period of at least 10 years when V_{CC} is less than V_{SO} . As system power returns and V_{CC} rises above V_{SO} , the battery is disconnected, and the power supply is switched to external V_{CC} . Write protection continues for t_{ER} after V_{CC} reaches V_{PFD} to allow for processor stabilization. After t_{ER} , normal RAM operation can resume.

For more information on Battery Storage Life refer to the Application Note AN1012.

Table 10. Write Mode AC Characteristics

 $(T_A = 0 \text{ to } 70^{\circ}\text{C}; V_{CC} = 4.75\text{V to } 5.5\text{V or } 4.5\text{V to } 5.5\text{V})$

			M48Z128 / M48Z128Y					
Symbol	Parameter	-7	-70		-85		-120	
		Min	Max	Min	Max	Min	Max	
t _{AVAV}	Write Cycle Time	70		85		120		ns
t _{AVWL}	Address Valid to Write Enable Low	0		0		0		ns
t _{AVEL}	Address Valid to Chip Enable Low	0		0		0		ns
t _{WLWH}	Write Enable Pulse Width	55		65		85		ns
t _{ELEH}	Chip Enable Low to Chip Enable High	55		75		100		ns
t _{WHAX}	Write Enable High to Address Transition	5		5		5		ns
t _{EHAX}	Chip Enable High to Address Transition	15		15		15		ns
t _{DVWH}	Input Valid to Write Enable High	30		35		45		ns
t _{DVEH}	Input Valid to Chip Enable High	30		35		45		ns
t _{WHDX}	Write Enable High to Input Transition	0		0		0		ns
t _{EHDX}	Chip Enable High to Input Transition	10		10		10		ns
t _{WLQZ} (1,2)	Write Enable Low to Output Hi-Z		25		30		40	ns
t _{AVWH}	Address Valid to Write Enable High	65		75		100		ns
t _{AVEH}	Address Valid to Chip Enable High	65		75		100		ns
t _{WHQX} (1,2)	Write Enable High to Output Transition	5		5		5		ns


Notes: 1. $C_L = 5pF$ (see Figure 4).

POWER SUPPLY DECOUPLING and UNDERSHOOT PROTECTION

Icc transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the V_{CC} bus. These transients can be reduced if capacitors are used to store energy, which stabilizes the V_{CC} bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of $0.1\mu F$ (as shown in Figure 8) is recommended in order to provide the needed filtering.

In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on V_{CC} that drive it to values below V_{SS} by as much as one Volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, it is recommeded to connect a schottky diode from V_{CC} to V_{SS} (cathode connected to V_{CC} , anode to V_{SS}). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount.

Figure 8. Supply Voltage Protection

^{2.} If \overline{E} goes low simultaneously with \overline{W} going low after \overline{W} going low, the outputs remain in the high-impedance state.

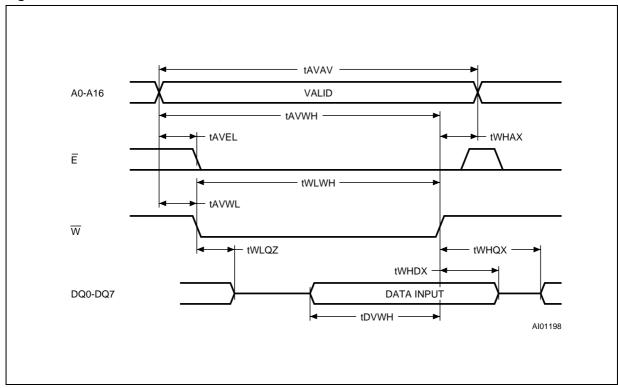


Figure 9. Write Enable Controlled, Write AC Waveforms

Note: Output Enable (\overline{G}) = High.

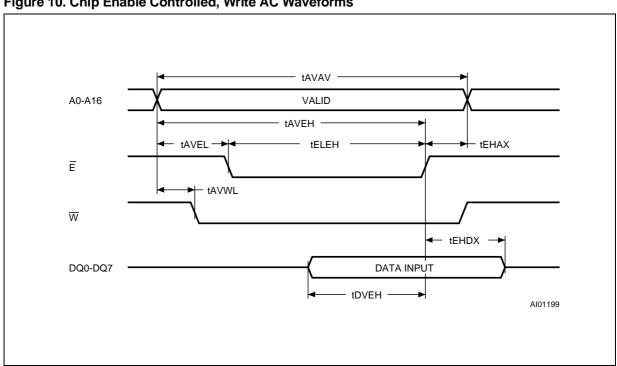
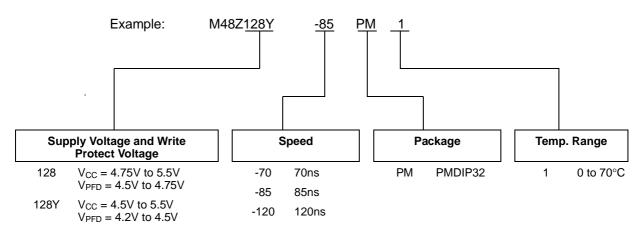
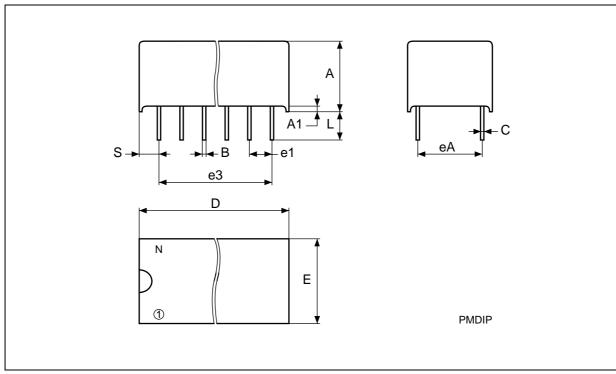



Figure 10. Chip Enable Controlled, Write AC Waveforms

Note: Output Enable (\overline{G}) = High.

477

ORDERING INFORMATION SCHEME



For a list of available options (Package, Speed, etc..) or for further information on any aspect of this device, please contact the SGS-THOMSON Sales Office nearest to you.

PMDIP32 - 32 pin Plastic DIP Module

Symb		mm			inches				
Symb	Тур	Min	Max	Тур	Min	Max			
А		9.27	9.52		0.365	0.375			
A1		0.38	_		0.015	_			
В		0.43	0.59		0.017	0.023			
С		0.20	0.33		0.008	0.013			
D		42.42	43.18		1.670	1.700			
Е		18.03	18.80		0.710	0.740			
e1		2.29	2.79		0.090	0.110			
e3		34.29	41.91		1.350	1.650			
eA		14.99	16.00		0.590	0.630			
L		3.05	3.81		0.120	0.150			
S		1.91	2.79		0.075	0.110			
N		32		32					

PMDIP32

Drawing is not to scale.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1998 SGS-THOMSON Microelectronics - All Rights Reserved

® ZEROPOWER is a registered trademark of SGS-THOMSON Microelectronics

M BYTEWIDE is a trademark of SGS-THOMSON Microelectronics

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

_