
 LH77790
Microcontroller Application Note 32-bit RISC

PROGRAMMING AND COMPILING BOOTABLE CODE FOR THE LH77790

Scott Robertson, Senior Software Engineer

INTRODUCTION
The ARM Software Development Toolkit

(ARMTools) supports a couple different
methods for producing bootable code
images. Some of these methods are fully
supported by the EmbeddedICE or Angel
Debug Monitor, others do not provide full
feature debugging.

The LH77790 ‘system-on-chip’
microcontroller has a very powerful memory
management capability, allowing a couple
different ways to change which memory
code is executing from. This application note
will describe the different ways to create
bootable code using the ARMTools, how to
initialize the LH77790 (790 for short)
memory map, and how to move memory
regions and change which memory code is
executing from.

START-UP CODE FOR BASIC 790
INITIALIZATION

There are two ways to generate a
bootable program using the ARMTools. The
easier method, which only works for
assembly language programs, is to let
ARMTools map your program code itself and
set-up its own jump to the start of your code.
This method works well for programming
assembly code for bootable EPROMs, but it
does not allow for hardcoded interrupt
vectors or C code. The other more involved
method accommodates C code and
hardcoded vectors, so code could remain in
EPROM or FLASH if desired. The following
discussion on how to initialize the memory
management registers is common to both
methods for generating bootable code.

790 Memory Initialization
As described in Chapter 5 ‘Memory and

Peripheral Interface’ in the 790 User’s
Guide, there are a number of registers which

must be programmed to take advantage of
the built-in chip enable signals. For non-
DRAM memory and peripherals, there are
four types of registers which must be
initialized for each region of memory: a
Bank Control Register, a Segment
Descriptor Register, a Start Register, and a
Stop Register. The order of programming
these registers is important due to the way
the 790 determines if a memory address is
mapped to a chip enable. Please refer to
chapter 5 in the 790 User’s Guide for a full
discussion on the registers and how the 790
uses them, as well as for using DRAM. The
examples presented here only use SRAM
and ROM.

Upon power-up/reset, the 790 starts
fetching instructions from location 0x0 (x8 or
x16 memory interface is determined by the
state of the Byte Boot pin on boot-up).
Memory configuration is typically
programmed very early in the boot-up code
so that read/write memory can be used
(boot-up memory is typically not read/write).
The following assembly code sample can be
assembled, burned into an EPROM, and run
on the 790 Evaluation Board. To do so, the
linker options must be set for a base at 0x0,
as stated in the next section. The code
configures a 16-bit wide 512KB SRAM
memory region for Supervisor and User
read/write privileges, one wait state, non-
cacheable, using chip enable 4 (the chip
enable used on the 790 Evaluation Board for
accessing external SRAM). Any aspect of
this code can be easily modified for specific
applications - please refer to the 790 User’s
Guide for bit definitions. After configuring
external memory, it initializes part of the
Parallel Peripheral Interface (PPI) and sits in
a loop blinking the LED on the 790
Evaluation Board.

AREA TopTest, CODE ; name this block of code, as required by ARM Tools.

; DEFINES
SRAM_START1 * &00600000
SRAM_END1 * SRAM_START1 + &00080000
WAIT_VALUE * &F000

ENTRY ; Start of code declaration required by ARM Tools.

; Code boots from EPROM at 0x0, using the default segment.
; The following code fragment configures SRAM at 0x00600000 - 0x00680000.
; It uses Bank Configuration Reg 2, Segment Descriptor Reg 2, Start 2, and Stop 2,
; though others could be used as long as care is taken regarding the segment that code
; is executing from.
; SDR2 is programmed to select BCR2, though any bank other than the default could be used.

init_sram ; Set up External SRAM for
 ; location 0x00600000 - 0x00680000,
 ; using START2,STOP2,SDR2,BCR2
 LDR r0,=0xffffa108 ; Addr of Bank Cfg Reg 2
 LDR r1,=0x00009300 ; 16-bit I/F, use CE4 for Hi&Low byte
 STR r1,[r0] ; Write value to BCR2

 LDR r0,=0xffffa048 ; Addr of Segment Descriptor Reg 2
 LDR r1,=0x00007804 ; S/U R/W,non-cacheable,32-bit mode,Bank2
 STR r1,[r0] ; Write value to SDR2 Reg

 LDR r0,=0xffffa008 ; Addr of START2 reg.
 LDR r1,=SRAM_START1 ; Start addr of SRAM
 STR r1,[r0] ; Write start addr to START2 Reg

 LDR r0,=0xffffa028 ; Addr of STOP2 reg.
 LDR r1,=SRAM_END1 ; Start end addr of SRAM
 STR r1,[r0] ; Write start addr to START2 Reg

; ppi_reg_init ; Setup for blinking the LED
 MOV r11,#0x80 ; Value to init PPI to all outputs

LDR r12,=0xffff1c00 ; PPI Base Addr
 STR r11,[r12,#&C] ; Set all ports to outputs

wait4ever
 LDR r8,=WAIT_VALUE ; wait value
 MOV r11,#&00 ; Set up to turn LED ON
 STR r11,[r12,#8] ; PPI port C=> 00000000
wait4ever2
 SUBS r8,r8,#1 ; Decrement & set flags
 BNE wait4ever2 ; loop to wait #1.
 MOV r11,#&FF ; Set up to turn LED OFF
 STR r11,[r12,#8] ; PPI port C=> 11111111
 LDR r8,=WAIT_VALUE ; wait value
wait4ever3
 SUBS r8,r8,#1 ; Decrement & set flags
 BNE wait4ever3 ; loop to wait #2.
 B wait4ever ; Branch Always - endless loop

END ; Declare the end of the program.

Bootable Assembly Code
ARMTools, by default, locates program

code starting at address 0x8000 (8000 Hex).
The actual program code starts at offset
0x80, since the tools add a little overhead
that is executed prior to the program code.
In order to generate bootable assembly
code, which must support the initial
processor fetches from 0x0, the following
linker option can be added:

-RO-base 0x0
This will put the base of Read Only memory
at 0x0, so the ARMTools will place code
starting at 0x0 instead of 0x8000 (user code
still starts at offset 0x80). To add this linker
option in the Windows-based ARMTools (the
ARM Project Manager), select ‘Options’ from
the top menu bar, then select ‘Linker’ from
the pull down menu, type in the desired
options, click ‘OK’, and build the code.

Unless otherwise specified, the output of
the above process will be an executable file
with the same file name as the source code
but with no extension. This file can be
burned into an EPROM and run on the
LH77790 Evaluation Board. The code will
run from the default memory segment and
will have to initialize any RAM or peripherals
it wants to use.

Bootable Code and ‘C’
Generating bootable code is described in

ARM’s ‘ARM Software Development Toolkit
Programming Techniques’ book in Chapter 9
‘Writing Code for ROM’. This book is
supplied with ARMTools. The following
example is based on that chapter. It expects
ROM to reside at address 0x0 upon power-
on/reset.

The assembly code fragment below
initializes parts of the 790 from power-
on/reset and sets up for executing code
written in C. The routine sets up the
necessary definitions for compiled C code
and at the end branches to a C program (not
included here). Since the keyword ‘Entry’ in
the assembly code defines the start of code
execution, a name other than ‘main’ should
be used in the C code. The assembly code
fragment below uses the function name
‘C_Entry’ for the entry point in C code. The
following paragraphs will describe the
operation of the assembly below.

Upon power-on/reset, the first instruction
fetched is the reset vector, which branches

to the Reset_Handler. The intervening
instructions map to the ARM’s interrupt
vectors and are at the correct location for
programming a ROM (provided the correct
linker options are specified, which will be
detailed below). The other interrupt handlers
are also placed prior to the Reset_Handler
so that code execution bypasses them
during a reset. Users can add their own
program code for the Undefined, SWI,
Prefetch, Abort, IRQ, and FIQ interrupt
handlers (they are currently just infinite
loops).

The Reset_Handler first ensures that
interrupts are disabled and sets up an
interrupt stack at the top of RW memory,
then sets up a supervisor stack immediately
under it. Note that the appropriate mode
must be entered to initialize its stack pointer.
Next the 790 internal registers are
configured for accessing memory. This
example programs the chip enables as they
are used on the Evaluation Board. EPROM
is assigned to a segment rather than leaving
it in the default segment, and the default
segment is mapped to the unused chip
enable 5. This way CE5 will go active if the
code tries to access an undefined memory
region. SRAM and DRAM regions are then
configured, again in accordance with the
Evaluation Board wiring for the chip enables.

Finally, interrupts are enabled, memory is
initialized, the cache is enabled (this may not
be desirable for early debugging of code
since cache bus cycles will not be seen
externally), and the code will branch to the
user’s ‘C_Entry’ routine in C code.

As mentioned earlier, certain assembler,
compiler, and linker options must be set in
the ARM Project Manager so that the
executable code produced will all work
together and start at address 0x0. Options
can be set by selecting ‘Options’ on the top
menu bar in the ARM Project Manager, and
then selecting Assembler, Compiler, and
Linker as desired to set options for each.
The ‘Project Options’ should be set to Little
Endian, ARM 6/7 Target Processor, and
ARMCC/ARMASM. The following options
will work with the above assembly boot code
and user supplied C code:

Assembler Options:
-apcs 3/noswst

Compiler Options:

-list -fc -apcs 3/noswst/nofp

Linker Options:
-info sizes -LIST graphics.lst -Xref -

Symbols - -o graphics -Bin -RO-base 0 -RW-
base 0x00600000 -First init_gra.o(Init) -
Remove -NoZeroPad -Map

The -Bin option specifies a binary output file
instead of an ARM Image Format. This
code is intended for burning in an EPROM,
not running under the ARMulator. Please
refer to the ARM manuals for explanations of
the above options. This is one example of
how to program, compile, and link bootable
C code, others may exist.

; The AREA must have the attribute READONLY, otherwise the linker will not place it in ROM.
;
; The AREA must have the attribute CODE, otherwise the assembler will not
; let us put any code in this AREA
;
; Note the '|' character is used to surround any symbols which contain
; non standard characters like '!'.

AREA Init, CODE, READONLY
 OPT 1
 OPT 64
 OPT 256
 OPT 1024
 OPT 4096

; Now some standard definitions...

Mode_IRQ EQU 0x12
Mode_SVC EQU 0x13

I_Bit EQU 0x80
F_Bit EQU 0x40

SWI_Exit EQU 0x11

; Locations of various things in our memory system

RAM_Base EQU 0x600000 ; 512k RAM at this base
RAM_Limit EQU 0x680000

IRQ_Stack EQU RAM_Limit ; 1K IRQ stack at top of memory
SVC_Stack EQU RAM_Limit-1024 ; followed by SVC stack

; 790 EQUATES
ROM_BASE * &00000000
ROM_END * &00100000
INT_SRAM * &60000000
SRAM_START * &00600000
SRAM_END * SRAM_START + &00080000
SRAM_TEST * &00650000
DRAM1START * &00700000
DRAM1END * DRAM1START + &00100000
DRAM2START * &00800000
DRAM2END * DRAM2START + &00100000
CACHE_CTRL * &FFFFA400
WAIT_VALUE * &5000

; --- Set the entry point
ENTRY

; --- Setup interrupt / exception vectors
; The ROM is expected to be at address 0, so this is just a sequence of branches

B Reset_Handler ; This branch is taken at power-up/reset.
B Undefined_Handler
B SWI_Handler
B Prefetch_Handler
B Abort_Handler

NOP ; Reserved vector
B IRQ_Handler
B FIQ_Handler

; The following handlers do not do anything useful in this example.
;
Undefined_Handler

B Undefined_Handler
SWI_Handler

B SWI_Handler
Prefetch_Handler

B Prefetch_Handler
Abort_Handler

B Abort_Handler
IRQ_Handler

B IRQ_Handler
FIQ_Handler

B FIQ_Handler

; ************** The RESET entry point **************
Reset_Handler

; --- Initialise stack pointer registers
; Enter IRQ mode and set up the IRQ stack pointer

MOV R0, #Mode_IRQ:OR:I_Bit:OR:F_Bit ; No interrupts
MSR CPSR, R0
LDR R13, =IRQ_Stack

; Set up other stack pointers if necessary
; ...

; Set up the SVC stack pointer last and return to SVC mode
MOV R0, #Mode_SVC:OR:I_Bit:OR:F_Bit ; No interrupts
MSR CPSR, R0
LDR R13, =SVC_Stack

; --- Initialise memory system
; Do 790 initializations.
 ; NOTES:
 ; - r11, r12 are used in this example for controlling the LED.
 ; - When programming Memory Configurations, first set
 ; BCR & SDR, then START, and do STOP last.

ppi_reg_init ; Setup 1st for calls that blink the LED
MOV r11,#0x80 ; Value to init PPI to all outputs
LDR r12,=0xffff1c00 ; PPI Base Addr
STR r11,[r12,#&C] ; Set all ports to outputs

init_rom ; Set up ROM for
 ; location 0x00000000 - 0x00100000,
 ; using START1,STOP1,SDR1,BCR1
 LDR r0,=0xffffa104 ; Addr of Bank Cfg Reg 1
 LDR r1,=0x00001003 ; 8-bit I/F, 1 wait, CE0 for Hi&Low byte
 STR r1,[r0] ; Write value to BCR1

 LDR r0,=0xffffa044 ; Addr of Segment Descriptor Reg 1
 LDR r1,=0x00007C02 ; S/U R/W,cacheable,32-bit mode,Bank1
 STR r1,[r0] ; Write value to SDR1 Reg

 LDR r0,=0xffffa004 ; Addr of START1 reg.
 LDR r1,=ROM_BASE ; Start addr of ROM
 STR r1,[r0] ; Write start addr to START0 Reg

 LDR r0,=0xffffa024 ; Addr of STOP1 reg.
 LDR r1,=ROM_END ; End addr of ROM
 STR r1,[r0] ; Write start addr to START0 Reg

chg_default_seg
 LDR r0,=0xffffa100 ; Addr of Bank Cfg Reg 0
 LDR r1,=0x00008C00 ; 16-bit I/F, use CE5 for Hi&Low byte
 STR r1,[r0] ; Write value to BCR0

 LDR r0,=0xffffa060 ; Addr of Segment Descriptor Reg 8
 LDR r1,=0x00007801 ; S/U R/W,non-cache,32-bit mode,Bank0
 STR r1,[r0] ; Write value to SDR1 Reg
 ; SDR8, the default seg, does not have a START and STOP register.

init_sram ; Set up External SRAM for
 ; location 0x00600000 - 0x00680000,
 ; using START2,STOP2,SDR2,BCR1
 LDR r0,=0xffffa108 ; Addr of Bank Cfg Reg 2
 LDR r1,=0x00009300 ; 16-bit I/F, use CE4 for Hi&Low byte
 STR r1,[r0] ; Write value to BCR1

 LDR r0,=0xffffa048 ; Addr of Segment Descriptor Reg 2
 LDR r1,=0x00007804 ; S/U R/W,non-cache,32-bit mode,Bank2
 STR r1,[r0] ; Write value to SDR0 Reg

 LDR r0,=0xffffa008 ; Addr of START2 reg.
 LDR r1,=SRAM_START ; Start addr of SRAM
 STR r1,[r0] ; Write start addr to START2 Reg

 LDR r0,=0xffffa028 ; Addr of STOP2 reg.
 LDR r1,=SRAM_END ; Start end addr of SRAM
 STR r1,[r0] ; Write start addr to START2 Reg

init_dram ; Set up CE2 External DRAM for location
 ; 0x00700000 - 0x00800000, (1MB)
 ; using START3,STOP3,SDR6,BCR6
; LDR r0,=0xffffa118 ; Addr of Bank Cfg Reg 6a
; LDR r1,=0x00009030 ; 8-bit I/F, use CE2 for Hi&Low byte
; STR r1,[r0] ; Write value to BCR6a
;
; LDR r0,=0xffffa120 ; Addr of Bank Cfg Reg 6b
; LDR r1,=0x00000013 ; Active Refresh, 1meg, PageMode
; STR r1,[r0] ; Write value to BCR6a
;
; LDR r0,=0xffffa04C ; Addr of Segment Descriptor Reg 3
; LDR r1,=0x00007840 ; S/U R/W,non-cache,32-bit mode,Bank6
; STR r1,[r0] ; Write value to SDR0 Reg
;
; LDR r0,=0xffffa00C ; Addr of START3 reg.
; LDR r1,=DRAM1START ; Start addr of SRAM
; STR r1,[r0] ; Write start addr to START3 Reg
;
; LDR r0,=0xffffa02C ; Addr of STOP3 reg.

; LDR r1,=DRAM1END ; Start end addr of SRAM
 ; STR r1,[r0] ; Write start addr to START3 Reg
 ;
 ; ; Set up CE3 External DRAM for location
 ; ; 0x00800000 - 0x00900000, (1MB)
 ; ; using START4,STOP4,SDR7,BCR7
 ; LDR r0,=0xffffa11C ; Addr of Bank Cfg Reg 7a
 ; LDR r1,=0x000090C0 ; 8-bit I/F, use CE3 for Hi&Low byte
 ; STR r1,[r0] ; Write value to BCR7a
 ;
 ; LDR r0,=0xffffa124 ; Addr of Bank Cfg Reg 7b
 ; LDR r1,=0x00000013 ; Active Refresh, 1meg, PageMode
 ; STR r1,[r0] ; Write value to BCR6a
 ;
 ; LDR r0,=0xffffa04C ; Addr of Segment Descriptor Reg 4
 ; LDR r1,=0x00007880 ; S/U R/W,non-cache,32-bit mode,Bank7
 ; STR r1,[r0] ; Write value to SDR0 Reg
 ;
 ; LDR r0,=0xffffa010 ; Addr of START4 reg.
 ; LDR r1,=DRAM2START ; Start addr of SRAM
 ; STR r1,[r0] ; Write start addr to START4 Reg
;
; LDR r0,=0xffffa030 ; Addr of STOP4 reg.
; LDR r1,=DRAM2END ; Start end addr of SRAM
; STR r1,[r0] ; Write start addr to START4 Reg

dram ; Test DRAM
; LDR r3,=DRAM1START ; Set r3 to point to DRAM1
; LDR r4,=&12345678 ; Value to write
; STR r4,[r3] ; Write value to DRAM
; LDR r5,[r3] ; Read DRAM
; ADD r3,r3,#0x4 ; Increment addrss to next word (0C)
; STR r5,[r3] ; Write value to DRAM
; SUBS r4,r4,r5 ; r4=r4-r5 (chk readback)
;
 ; LDR r3,=DRAM2START ; Set r3 to point to DRAM2
 ; LDR r4,=&BADDFADE ; Value to write
 ; STR r4,[r3] ; Write value to DRAM
 ; LDR r5,[r3] ; Read DRAM
 ; ADD r3,r3,#0x4 ; Increment addrss to next word (0C)
 ; STR r5,[r3] ; Write value to DRAM
 ; SUBS r4,r4,r5 ; r4=r4-r5 (chk readback)

; --- Initialise critical IO devices

; --- Initialise interrupt system variables here
; ...

; --- Enable interrupts
; Now safe to enable interrupts, so do this and remain in SVC mode

MOV R0, #Mode_SVC:OR:F_Bit ; Only IRQ enabled
MSR CPSR, R0

; --- Initialise memory required by C code

IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data)
IMPORT |Image$$RW$$Base| ; Base of RAM to initialise

IMPORT |Image$$ZI$$Base| ; Base and limit of area
IMPORT |Image$$ZI$$Limit| ; to zero initialise

LDR r0, =|Image$$RO$$Limit| ; Get pointer to ROM data
LDR r1, =|Image$$RW$$Base| ; and RAM copy
LDR r3, =|Image$$ZI$$Base| ; Zero init base => top of initialised data
CMP r0, r1 ; Check that they are different
BEQ %1

0 CMP r1, r3 ; Copy init data
LDRCC r2, [r0], #4
STRCC r2, [r1], #4
BCC %0

1 LDR r1, =|Image$$ZI$$Limit| ; Top of zero init segment
MOV r2, #0

2 CMP r3, r1 ; Zero init
STRCC r2, [r3], #4
BCC %2

; --- Now we enter the C code

IMPORT C_Entry

; Enable Cache
cache_enable

LDR r0,=CACHE_CTRL ; Addr of Cache Control Reg.
LDR r1,=&01 ; Value to write - Enable Cache
STR r1,[r0] ; Write value to Cache Ctrl Reg.

B C_Entry
; The application is not expected to return.

END

