<u>SPEC No. EL097064</u> <u>ISSUE: July. 9 1997</u> <u>SPECIFICATIONS</u>
Product Type <u>8 M bit PSRAM (524, 288×16bit)</u> LH6P82Z1
<pre>Wodel No. (LH6P82Z1) *This specifications contains 26 Pages including the cover and appendix.</pre>
If you have any objections, please contact us before issuing purchasing order. CUSTOMERS ACCEPTANCE DATE: BY: PRESENTED BY: PRESENTED BY: BY: PRESENTED BY: BY: BY: BY: PRESENTED BY: BY: BY: BY: BY:
T. KUZUMOTO Dept. General Manager REVIEWED BY: PREPARED BY: <u>J. Murakami</u> <u>H. Jakata</u> Y. Murakami <u>H. Takata</u> Engineering Department I
Memory IC Engineering Center Tenri Integrated Circuits Group SHARP CORPORATION

SHARP LH6P82Z1 Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company. ●When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions. (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3). Office electronics •Instrumentation and measuring equipment •Machine tools •Audiovisual equipment •Home appliances •Communication equipment other than for trunk lines (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall svstem. •Control and safety devices for airplanes, trains, automobiles, and other transportation equipment •Mainframe computers •Traffic control systems •Gas leak detectors and automatic cutoff devices •Rescue and security equipment •Other safety devices and safety equipment, etc. (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy. •Aerospace equipment •Communications equipment for trunk lines •Control equipment for the nuclear power industry •Nedical equipment related to life support, etc.

(4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.

Please direct all queries regarding the products covered herein to a sales representative of the company.

Contents

1.	General	2
2.	Features	2
3.	Pin Configuration and Pin Description	3
4.	Block Diagram	5
5.	Absolute Maximum Ratings	6
6.	Recommended Operating Conditions	6
7.	Pin Capacitances	6
8.	DC Electrical Characteristics	7
9.	AC Electrical Characteristics	8
10.	Timing Charts	12
11.	Package and packing specification	21

he LH6P82Z1 is a 8M bit PSEUDO	D-SRAM with a 524,288-word by 16-bit configuration
FSH pin and OE pin can be conr	nected and used like a $\overline{\text{OE}}/\overline{\text{RFSH}}$ pin of standard 4M
it PSEUDO-SRAM, so it is easy	to replace the 4M bit PSEUDO SRAMs with the
H6P82Z1.	
. Features	
• 524,288 × 16 bit organizatio	n
• Power supply	
Operating:	+3. 3±0. 3V
Data retention:	+2.2V to +3.6V
• Access time:	120ns (MAX.)
• Cycle time:	190ns (MIN.)
 Power consumption 	
Operating:	144mW (MAX.)
Standby:	180µW (MAX.)(CMOS input level)
Self-refresh:	360µW (MAX.)(Vcc=3.0V, CMOS input level)
• LVTTL compatible I/O	
• Available for address refres	sh, auto-refresh and self-refresh modes
• 4,096 refresh cycles/64ms	
• Address non-multiplex	
• Package:	48-pin, TSOP(1) (TSOP48-P-1218)
• Package material:	Plastic
• Substrate material:	P-type silicon
• Process:	Silicon-gate CMOS
• Operating Temperature:	0 to 70 °C
• Not designed or rated as rac	liation hardened

LH6P82Z1

CE	CS	RFSH	WE	ŌĒ	UB	LB		Mode		I/0 8~15
					H	L		Lower byte access	Output data	High-Z
T	н	н	Н	T	L	H	Read	Upper byte access	High-Z	Output data
L	п	n	п	L	L	L	neau	Word access	Output data	Output data
		Note 1			H	H		Invalid	High-Z	High-Z
					H	L		Lowe byte access	Input data	High-Z
т	н	Н	,	x	L	H	Write	Upper byte access	High-Z	Input data
L	п	n	L	Λ	L	L	HIILE	Word access	Input data	Input data
		Note 1			H	H		Invalid	High-Z	High-Z
H	X	L	X	X	X	X	Auto Refresh		High-Z	High-Z
L	L	H	X	X	X	X	CS Standby		High-Z	High-Z
H	X	H	X	X	X	X	S	tandby	High-Z	High-Z

H=High, L=Low, X=Don't Care

Note 1:If $\overline{\text{RFSH}}$ =L, it is necessary to meet t_{RPH} when $\overline{\text{RFSH}}$ falling.

L H 6 P 8 2 Z 1

4. Block Diagram

5. Absolute Maximum Ratings

Parameter	symbol	Rating	Unit	Note
Supply voltage	V _T	-0.5 to +4.6	V	2
Output short circuit current	Ιo	50	mA	
Power dissipation	PD	600	mW	
Operating temperature	Topr	0 to +70	r	
Storage temperature	Tstg	-65 to +150	r	

Note 2: The maximum applicable voltage on any pin with respect to GND.

6. Recommended Operating Conditions

				(Ta =	0 to 70t	:)
Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	Vcc	3. 0		3.6	V	3
	GND	0	0	0	V.	3
Input voltage	V _{IH}	2.0		4.5	V	
	VIL	-0.5		0.8	V	

Note 3: The supply voltage with all Vcc pins must be on the same level. The supply voltage with all GND pins must be on the same level.

7. Pin Capacitance

(Ta = 25%, f = 1MHz, Vcc = 3.3V)

Para	Symbo1	MIN.	MAX.	Unit	
· · · · · · · · · · · · · · · · · · ·	$A_1 - A_{19}, \overline{UB}, \overline{LB}$	С и м 1		8	pF
Input capacitance	WE, OE	C 1 N 2		8	pF
	CE, CS, RFSH	C 1 N 3		8	pF
Input/Output	I/0 ₀ -I/0 ₁₅	Cour1		10	pF
capacitance					

•

		(Ta = 0 to	70°, Vc	c = 3.	OV to	3. 6V)
Parameter	Symbol	Condition	MIN.	MAX.	Unit	Note
Operating current in	Iccı	$t_{rc}=t_{rc}(MIN.)$	-	40	mA	4, 5
normal operation						
Standby current	Icc2	\overline{CE} , $\overline{RFSH} = V_{1H}(MIN.)$	-	1	mA	4
		$\overline{\text{CE}}, \overline{\text{RFSH}} = V_{cc} - 0.2V$	-	50	μA	4
Self-refresh average	Icc 3	$\overline{\text{CE}}=V_{\text{IH}}(\text{MIN.}),$	-	1	mA	4
current		RFSH=V _{1L} (MAX.), Vcc=3.0V				
		$\overline{\text{CE}}=V_{cc}-0.2V,$	-	120	μA	4
		RFSH =0. 2V, Vcc=3. 0V				
Input leakage current	ILI	0V≦Vı⊵≦6.5V, 0V on all	-10	10	μA	
		other pins				
Output leakage current	ILO	OV≦Vour≦Vcc+0.3V,	-10	10	μA	
		Input/output pins				
		in High-Z state				
Output High voltage	Vон	Iour=-1mA	2.4	-	V	-
		Iour=-100#A	Vcc-0. 2	-		_
Output Low voltage	Vol	Ι _{ουτ} = 1mA -	-	0.4	V	
		Ιουτ=100μΑ	-	0.2]	
Data retention voltage	VR		2.2	3.6	V	

8. DC Electrical Characteristics

Note 4: The input/output pins are in high impedance state.

Note 5: I_{cc1} depends on the cycle time.

Parameter	Symbol	MIN.	MAX.	Unit	Note
Random read, write cycle time	trc	190	-	ns	
Random read modify write cycle time	trmw	250	-	ns	
CE pulse width	tce	120	10,000	ns	
CE precharge time	tp	60	-	ns	
Address setup time	tas	0	-	ns	8
Row address hold time from $\overline{\text{CE}}$	trah	30	-	ns	8
Column address hold time from \overline{CE}	tcan	120	-	ns	
CS setup time from CE	tcss	0	-	ns	
CS hold time from \overline{CE}	tcsn	30	-	ns	
Read command setup time	trcs	0	-	ns	
Read command hold time	trch	0	-	ns	
CE Access time	tce.	-	120	ńs	9
OE Access time	toea	_	60	ns	9
CE to output in Low-Z	tclz	20	-	ns	
OE to output in Low-Z	tolz	0	-	ns	
Write disable to output in Low-Z	twiz	0	-	ns	
Chip disable to output in High-Z	tснz	0	30	ns	
Output disable to output in High-Z	tonz	0	30	ns	
WE to output in High-Z	twn 2	0	30	ns	
Write command pulse width	twcp	35	-	ns	
Write command setup time	twcs	35	10,000	ns	
Write command hold time	twcн	120	10,000	ns	
Data setup time from write disable	tosw	30	-	ns	10
Data setup time from chip disable	tosc	30	-	ns	10
Data hold time from write disable	tdhw	0	-	ns	10
Data hold time from chip disable	tdнc	30	-	ns	10
Data hold time from column address	toн	0	-	ns	
Column address hold time from chip	tAHC	0	-	ns	10
disable					
Column address hold time from write	t _{AHW}	0	-	ns	10
disable					

Parameter	Symbol	MIN.	MAX.	Unit	Note
Transition time (rise and fall)	tτ	3	50	ns	
Output disable setup time	tops	0	-	ns	
Output disable hold time	toph	15	-	ns	1
Refresh time interval (4096 cycles)	tref	-	64	ms	11
Auto refresh cycle time	trc	190	-	ns	11
Refresh delay time from CE	trfd	90	-	ns	
Refresh pulse width (Auto refresh)	tfap	80	8,000	ns	13, 22
Refresh precharge time (Auto refresh)	trp	40	-	ns	
CE delay time from refresh enable	tfce	190		ns	
(Auto refresh)					
Refresh pulse width (Self refresh)	t _{fas}	8	-	ms	13, 22
CE delay time from refresh precharge	tfrs	600	-	ns	14, 15
(Self refresh)					16
Vcc recovery time from data retention	tr	5	-	ШS	17
Refresh set up time	trs	0	-	ns	
Refresh disable hold time	trdh	15	-	ns	
Chip disable delay time from RFSH	trdd	15	-	ns	

SHARP LH6P82Z1

Note 6:	AC characterist:	ics are measured at t ₇ =5ns.	
Note 7:		ics are measured at the following condition.	
			- 2.4V
	INPUT	2. 2V	2. 41
		/ ~ <u>0.8V</u>	- 0.4V
		<u> </u>	-
	OUTPUT		
			-
Note 8:	Row address sign CE.	nals are latched in the memory at the falling	edge of
Note 9:	Measured with a	load equivalent to 50pF.	
		atched in the memory at the earlier rising ed	$re of \overline{CE}$
		$(t_{AHW}, t_{DSW}, t_{DHW})$ and $(t_{AHC}, t_{DSC}, t_{DHC})$ nee	
		the other is "Don't care".	
Note 11:		or auto refresh is needed to be executed 409	6 times
	within 64ms.		0 01200
Note 12:	In order to init	tialize the internal circuits, an initial pau	se of
		TSH=VIH is required after power-up, and follo	
	at least 8 dummy		
Note 13:		l self refresh are defined by RFSH pulse widt	h during
		pulse width is shorter than $t_{FAP}(MAX.)$, the	-
		cycle and memory cells are refreshed by an i	
		\overline{I} pulse width is longer than $t_{FAS}(MIN.)$, the	
		cle and memory cells are refreshed by an inte	
	clock generator		
Note 14:	If address refre	esh is used during normal read/write cycles,	the first
	address refresh	must be executed within $15\mu s$ after self-refr	esh or
	data retention m	node ends and the address refresh must be exe	cuted
	continuously for	4096 refresh cycles.	
Note 15:	If distributed a	auto-refresh is used during normal read/write	cycles,
	the first auto-r	refresh must be executed within 15µs after se	lf-refresh
	or data retentio	on mode ends.	
Note 16:	If burst auto-re	efresh is used during normal read/write cycle	s, the
	first auto-refre	esh must be executed within $15\mu s$ after self-r	efresh or
	data retention m	node ends, and the auto-refresh must be execu	ted
	continuously for	4096 refresh cycles.	
Note 17:	The transition t	time of the supply voltage in data retention i	mode is
	less than $0.05V/$	ms.	
Note 18:	The data retenti	on period must be longer than $t_{FAS}(MIN.)$ like	e
	self-refresh cyc	ele.	

11

Note 19: $\overline{\text{RFSH}}$ must be lower than 0.2V during the data retention period.

Note 20: CE and CS must be higher than Vcc-0.2V during the data retention period.

Note 21: Because a PSRAM operates dynamically like a DRAM, it is recommended to put bypass capacitors between Vcc and GND to absorb power supply noise due to the peak current.

Note 22: After $8000ns(t_{FAP}(MAX.))$ from \overline{RFSH} falling, the memory resets its internal address counter and enters self-refresh cycle. At the beginning of the self-refresh cycle, it takes longer than 8ms for all addresses to be refreshed. Therefore, in case that the \overline{RFSH} =L pulse length is from 8000ns to 8ms, refresh all addresses by external clocks within 64ms before the self-refresh to keep refresh time interval($t_{REF}(MAX.)$).

Auto refresh cycle (Note. 10, 12, 14, 15)

Self refresh cycle (Note. 13,14,15,16)

L H 6 P 8 2 Z 1

ackage and packing speci	fication	
Pookogo (utling Speci	£:	
. Package Outline Speci		
Refer to drawin	g No.AA1046	
. Markings		
2-1. Marking content	S	
(1) Product nam	e : LH6P82T	
(2) Company nam	e : SHARP	
(3) Date code		
(Example) <u>YY</u>	\underline{WW} $\underline{\times\times\times}$ Indicates th	e product was manufactured
	· · · · ·	week of 19YY.
	└───→ Denotes the	production ref.code (1~3)
	L Denotes the	production week.
		••••52,53)
		production year.
		igits of the year.)
	of "JAPAN" indicates the country of	origin.
2-2. Marking layout		
Refer drawing No.		
(Inis layout does not	define the dimensions of marking cha	aracter and marking position.
Packing Specification	(Dry packing for surface mount packa	
	used for the purpose of maintaining	
	PCB (Printed Circuit Board).	to quartery after mounting
	esin which is used for plastic packa	ages is stored at high
	absorb 0.15% or more of its weight	
	ge for a relatively large chip absor	
	xy resin and insert material (e.g. ch	
	porize into steam when the entire pac	
soldering proces	s (e.g. VPS). This causes expansion	and results in separation
	n and insert material, and sometimes	
This dry packing	is designed to prevent the above pr	oblem from occurring in
surface mount pa	-	
3-1. Packing Material		
Material Name	Material Specificaiton	Purpose
	Conductive plastic (60devices/tray)	
Upper cover tray	Conductive plastic (ltray/case) Aluminum polyethylene (lbag/case)	Fixing of device
Desiccant	Silica gel	Drying of device
P P band	Polypropylene (3pcs/case)	Drying of device
Inner case	Card board (600device/case)	Fixing of tray
Label	Paper (0000evice/case)	Packaging of device
1		Indicates part number,quanti and date of manufacture
Outer case	Card board	Outer packing of tray

LH6P82Z1

•

3-2. Outline dimension of tray Refer to attached drawing			
4. Storage and Opening of Dry Packing			
	 1. Store under conditions shown below before opening the dry packing (1) Temperature range : 5~40℃ (2) Humidity : 80% RH or less 		
 4-2. Notes on opening the dry packing (1) Before opening the dry packing, prepare a working table which is grounded against ESD and use a grounding strap. (2) The tray has been treated to be conductive or anti-static. If the device is transferred to another tray, use a equivalent tray. 			
(1) After ope temperatu	pening the dry packing lowing to prevent absorption ning the dry packing, store are of 5∼25℃ and a relative within 72 hours after open	e the ICs in an environ ve humidity of 60% or	ment with a
 4-4. Baking (drying) before mounting (1) Baking is necessary (A) If the humidity indicator in the desiccant becomes pink (B) If the procedure in section 4-3 could not be performed (2) Recommended baking conditions If the above conditions (A) and (B) are applicable, bake it before mounting. The recommended conditions are 16~24 hours at 120°C. Heat resistance tray is used for shipping tray. 5. Surface Mount Conditions 			
Please perform the following conditions when mounting ICs not to deteriorate IC quality.			
5-1. Soldering conditions (The following conditions are valid only for one time soldering.)			
Mounting Method	Temperature and Duration		Measurement Point
Reflow soldering Peak temperature of 230°C or less,		IC package	
(air) duration of less than 15 seconds.		surface	
200°C or over,duration of less than 40 seconds. Temperature increase rate of 1~4°C/second			
Manual soldering 260°C or less, duration of less		IC outer lead	
(soldering iron)			surface
			I
5-2. Conditions for removal of residual flux			
(1) Ultrasonic washing power : 25 Watts/liter or less			
(2) Washing time : Total 1 minute maximum			
(3) Solvent temperature : 15~40°C			
			L.

PSRAM Low Voltage Low Power LH6P82Z1 8M (524Kx16) (120 ns) (TSOP)