FEATURES

- Access time: 85 ns (MAX.), 100 ns (MAX.)
- Current consumption:

Operating: 40 mA (MAX.) 6 mA (MAX.) (t_{RC} , t_{WC} = 1 μ s) Standby: 45 μ A (MAX.)

Data Retention:

1.0 μ A (MAX. $V_{CCDR} = 3 \text{ V}, t_A = 25^{\circ}\text{C}$)

- Single power supply: 2.7 V to 3.6 V
- Operating temperature: -40°C to +85°C
- Fully-static operation
- Three-state output
- Not designed or rated as radiation hardened
- Packages:

32-pin $8 \times 20 \text{ mm}^2 \text{ TSOP}$ 32-pin $8 \times 13.4 \text{ mm}^2 \text{ STSOP}$

N-type bulk silicon

DESCRIPTION

The LH52D1000 is a static RAM organized as $131,072 \times 8$ bits which provides low-power standby mode. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

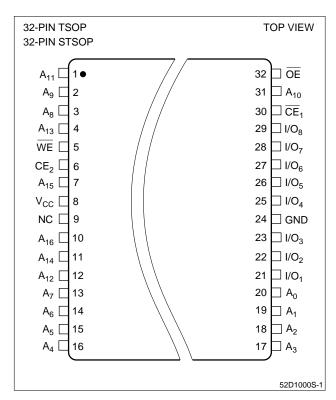


Figure 1. Pin Connections for TSOP and STSOP Packages

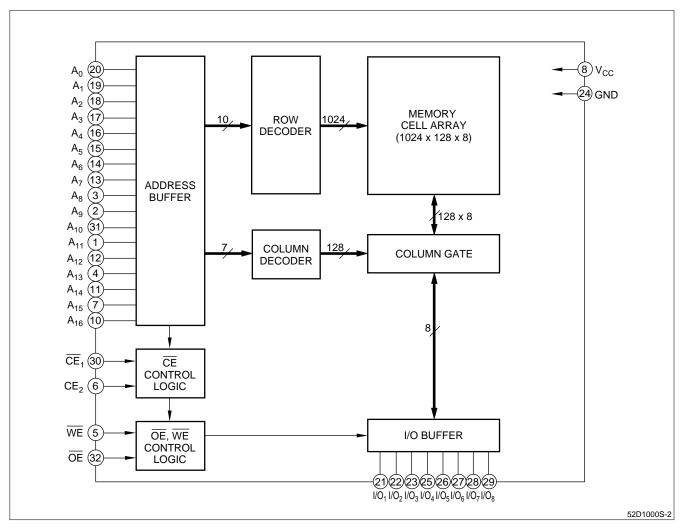


Figure 2. LH52D1000 Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
$A_0 - A_{16}$	Address inputs
CE ₁	Chip enable 1
CE ₂	Chip enable 2
WE	Write enable
OE	Output enable

SIGNAL	PIN NAME
I/O ₁ – I/O ₈	Data inputs and outputs
V _{CC}	Power supply
GND	Ground
NC	No connection

TRUTH TABLE

CE ₁	CE ₂	WE	ŌĒ	MODE	I/O ₁ – I/O ₈	SUPPLY CURRENT	NOTE
Н	_		_	Standby High impedance		Standby (I _{SB})	1
_	L		_			Otaliaby (158)	1
L	Н	L	_	Write	Data input	Active (I _{CC})	1
L	Н	Н	L	Read	Data output	Active (I _{CC})	
L	Н	Н	Н	Output disable	High impedance	Active (Icc)	_

NOTE:

1. — = Don't care

L = Low

H = High

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.3 to +4.6	V	1
Input voltage	VIN	-0.3 to V _{CC} + 0.3	V	1, 2
Operating temperature	T _{OPR}	-40 to +85	°C	_
Storage temperature	T _{STG}	-55 to +150	°C	

NOTE:

- 1. The maximum applicable voltage on any pin with respect to GND.
- 2. Undershoot of -3.0 V is allowed width of pulse below 50 ns.

RECOMMENDED DC OPERATING CONDITIONS ($T_A = -40^{\circ}\text{C}$ to +85°C)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	Vcc	2.7	3.0	3.6	V	_
Input voltage	V _{IH}	2.0	_	V _{CC} + 0.3	V	_
	V_{IL}	-0.3	_	0.6	V	1

NOTE:

DC ELECTRICAL CHARACTERISTICS ($T_A = -25$ °C to +85°C, $V_{CC} = 2.7$ V to 3.6 V)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP.	MAX.	UNIT
Input leakage current	ILI	$VIN = 0$ to V_{CC}		-1.0	_	1.0	μΑ
Output leakage current	I _{LO}	$\overline{CE}_1 = V_{IH} \text{ or } \overline{CE}_2 = V_{IL} \text{ or } \overline{VE} = V_{IL}$ $\overline{V_{VO}} = 0 \text{ V to } V_{CC}$	r	-1.0	_	1.0	μΑ
Operating supply	Icc	$\overline{V}_{IN} = V_{IL} \text{ or } V_{IH}, \overline{CE}_1 = V_{IL}, \overline{WE} = V_{IH}$ $CE_2 = V_{IH}, I_{I/O} = 0 \text{ mA}$	t _{CYCLE} = Min	_	_	40	mA
current	I _{CC1}	$\overline{\text{CE}}_1 = 0.2 \text{ V}, \text{ V}_{\text{IN}} = 0.2 \text{ V} \text{ or V}_{\text{CC}} - 0.2 \text{ V} $ $\overline{\text{CE}}_2, \overline{\text{WE}} = \overline{\text{V}}_{\text{CC}} - 0.2 \text{ V}, \overline{\text{I}}_{\text{I/O}} = 0 \text{ mA}$	$\begin{split} E_1 &= V_{IH} \text{ or } CE_2 = V_{IL} \text{ or } \\ OE &= V_{IH} \text{ or } WE = V_{IL} \\ V_{I/O} &= 0 \text{ V to } V_{CC} \\ \hline CE_1 &= V_{IL}, \overline{WE} = V_{IH} \\ I_1, I_{I/O} &= 0 \text{ mA} \\ &= 0.2 \text{ V or } V_{CC} - 0.2 \text{ V} \\ - 0.2 \text{ V, } I_{I/O} &= 0 \text{ mA} \\ \hline CE_1 &= V_{CC} - 0.2 \text{ V or } \\ CE_2 &= 0.2 \text{ V} \\ \hline CE_1 &= V_{IH} \text{ or } CE_2 = V_{IL} \\ I_{OL} &= 2.1 \text{ mA} \end{split}$	_	_	6	ША
Standby	I _{SB}	$\overline{CE}_1 = V_{CC} - 0.2 \text{ V or } CE_2 = 0.2 \text{ V}$	•	_	_	45	μА
current	I _{SB1}	$\overline{CE}_1 = V_{IH}$ or $\overline{CE}_2 = V_{IL}$		_	_	2.0	mA
Output	V _{OL}	$I_{OL} = 2.1 \text{ mA}$		_	_	0.4	V
voltage	VoH	$I_{OH} = -0.5 \text{ mA}$		V _{CC} - 0.5	_	_	V

^{1.} Undershoot of -3.0 V is allowed width of pulse below 50 ns.

AC ELECTRICAL CHARACTERISTICS AC Test Conditions

PARAMETER	MODE	NOTE
Input pulse level	0.4 V to 2.4 V	
Input rise and fall time	5 ns	_
Input and output timing Ref. level	1.5 V	
Output load	100 pF + 1TTL	1

NOTE:

READ CYCLE ($T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{CC} = 2.7 \text{ V}$ to 3.6 V)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	t _{RC}	85		ns	_
Address access time	t _{AA}	_	85	ns	
CE ₁ access time	tACE1	_	85	ns	
CE ₂ access time	t _{ACE2}	_	85	ns	
Output enable to output valid	toe	_	45	ns	_
Output hold from address change	tон	10	_	ns	_
CE ₁ Low to output active	t _{LZ1}	5		ns	1
CE ₂ High to output active	t _{LZ2}	5		ns	1
OE Low to output active	t _{OLZ}	0		ns	1
CE ₁ High to output in High impedance	t _{HZ1}	0	35	ns	1
CE ₂ Low to output in High impedance	t _{HZ2}	0	35	ns	1
OE High to output in High impedance	tonz	0	35	ns	1

NOTE:

WRITE CYCLE ($T_A = -40$ °C to +85°C, $V_{CC} = 2.7$ V to 3.6 V)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Write cycle time	t _{WC}	85		ns	_
CE ₁ Low to end of write	tcw1	75		ns	
CE ₂ High to end of write	t _{CW2}	75	_	ns	
Address setup time	tas	0	_	ns	
Write pulse width	twp	60	_	ns	
Write recovery time	t _{WR}	0		ns	
Input data setup time	t _{DW}	35		ns	
Input data hold time	t _{DH}	0		ns	
WE High to output active	tow	0		ns	1
WE Low to output in High impedance	twz	0		ns	1
OE High to output in High impedance	t _{OHZ}	0	35	ns	1

NOTE:

^{1.} Including scope and jig capacitance.

Active output to High impedance and High impedance to output active tests specified for a ±200 mV transition from steady state levels into the test load.

Active output to High impedance and High impedance to output active tests specified for a ±200 mV transition from steady state levels into the test load.

DATA RETENTION CHARACTERISTICS (T_A = -40 $^{\circ}$ C to +85 $^{\circ}$ C)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP	MAX.	UNIT	NOTE	
Data retention supply voltage	VCCDR	$\frac{\text{CE}_2 \leq 0.2 \text{ V or}}{\text{CE}_1 \geq \text{V}_{\text{CCDR}} - 0.2 \text{ V}}$		2.0	_	3.6	V	1
Data retention		V _{CCDR} = 3.0 V		1.0	_			
supply current	ICCDR	$CE_2 \le 0.2 \text{ V or}$ $CE_1 \ge \text{VCCDR} - 0.2 \text{ V}$ $T_A = 40^{\circ}\text{C}$	_	_	3.0 35	μΑ	1	
Chip enable setup time	tcdr	_		0	_	_	ms	_
Chip enable hold time	t _R			5	_		ms	_

NOTE:

1. $CE_2 \ge V_{CCDR} - 0.2 \text{ V or } CE_2 \le 0.2 \text{ V}$

2. Typical values at $T_A = 25^{\circ}C$

PIN CAPACITANCE ($T_A = 25^{\circ}C$, f = 1 MHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input capacitance	C _{IN}	V _{IN} = 0 V	_	_	10	pF	1
I/O capacitance	C _{I/O}	V _{I/O} = 0 V		_	10	pF	1

NOTE:

1. This parameter is sampled and not production tested.

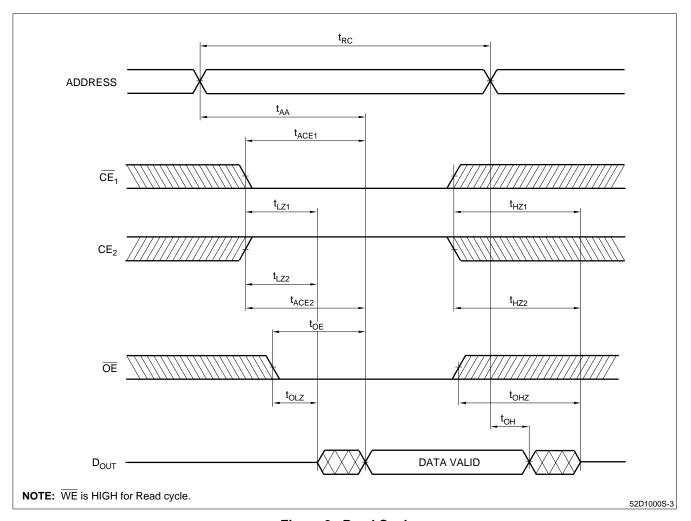
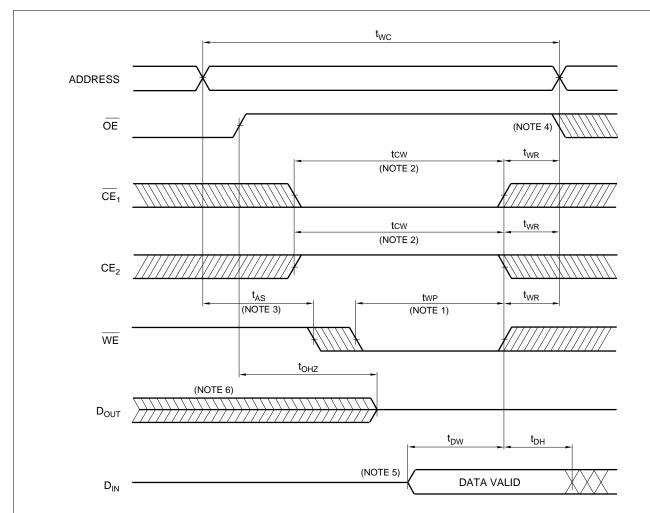
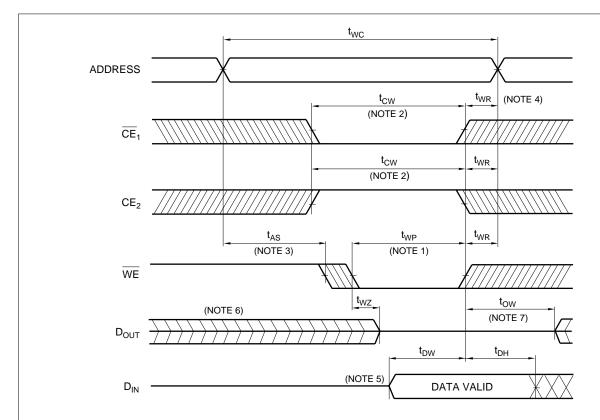



Figure 3. Read Cycle



NOTES:

- A write occurs during the overlap of a LOW CE₁, a HIGH CE₂ and a LOW WE.
 A write begins at the latest transition among CE₁ going LOW, CE₂ going HIGH and WE going LOW. A write ends at the earliest transition among CE₁ going HIGH, CE₂ going LOW and WE going HIGH. t_{WP} is measured from the beginning of write to the end of write.
- t_{CW} is measured from the later of CE₁ going LOW or CE₂ going HIGH to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end of write to the address change. t_{WR1} applies in case a write ends at CE₁ or WE going HIGH. t_{WR2} applies in case a write ends at CE₂ going LOW.
- 5. During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
- If CE₁ goes LOW simultaneously with WE going LOW or after WE going LOW, the outputs remain in high impedance state.
- If CE₁ goes HIGH simulaneously with WE going HIGH or before WE going HIGH, the outputs remain in high impedance state.

52D1000S-4

Figure 4. Write Cycle (OE Controlled)

NOTES:

- 1. A write occurs during the overlap of a LOW \(\overline{CE}_1\), a HIGH CE₂ and a LOW \(\overline{WE}\), A write begins at the latest transition among \(\overline{CE}_1\) going LOW, CE₂ going HIGH and \(\overline{WE}\) going LOW. A write ends at the earliest transition among \(\overline{CE}_1\) going HIGH. CE₂ going LOW and \(\overline{WE}\) going HIGH. t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from the later of \overline{CE}_1 going LOW or CE_2 going HIGH to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- t_{WR} is measured from the end of write to the address change. t_{WR1} applies in case a write ends at CE₁ or WE going HIGH. t_{WR2} applies in case a write ends at CE₂ going LOW.
- During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
- 6. If $\overline{\text{CE}}_1$ goes LOW simultaneously with $\overline{\text{WE}}$ going LOW or after $\overline{\text{WE}}$ going LOW, the outputs remain in high impedance state.
- If CE₁ goes HIGH simulaneously with WE going HIGH or before WE going HIGH, the outputs remain in high impedance state.

52D1000S-5

Figure 5. Write Cycle (OE Low Fixed)

8

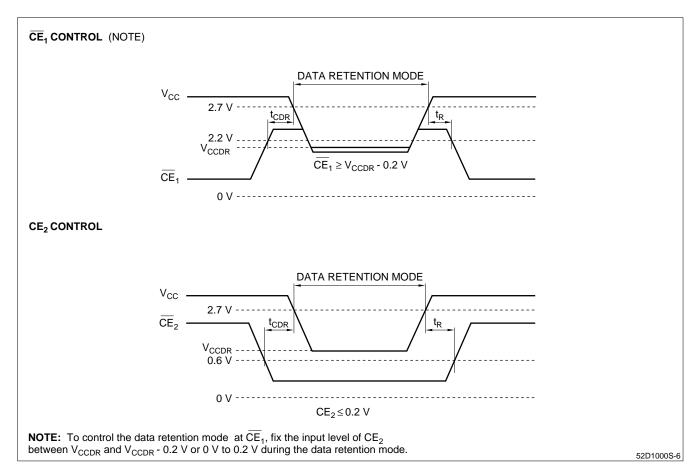
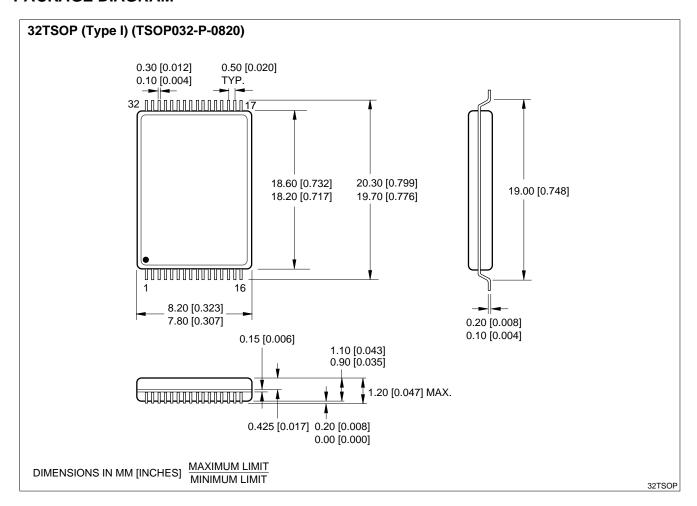
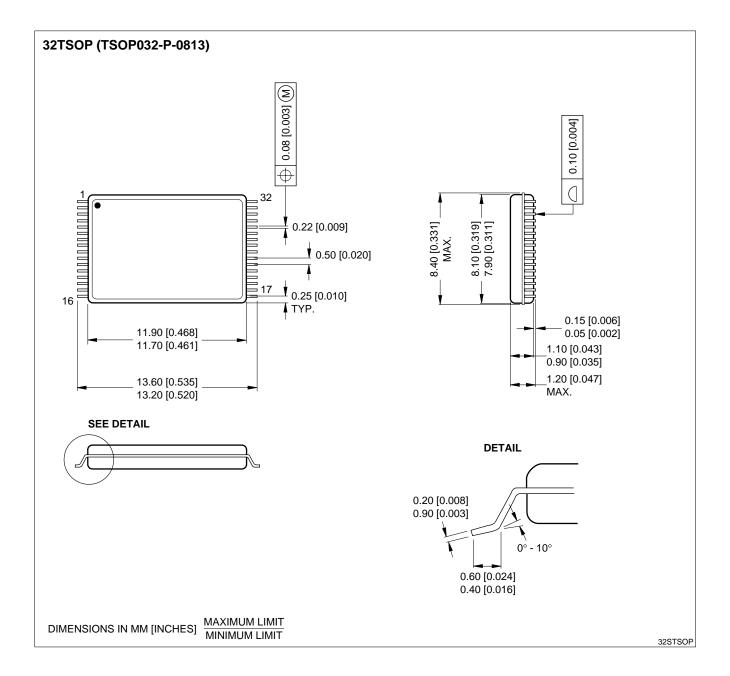
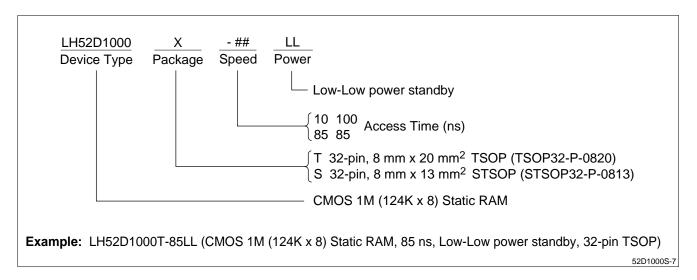




Figure 6. Data Retention (CE₁ Controlled)


PACKAGE DIAGRAM

10

ORDERING INFORMATION

