ť

	SPEC No. E L 0 8 7 1 1 1 ISSUE: Jul. 18. 1996
Γο;	
SPECI	FICATIONS
Product Type	256k SRAM
	256CHT-85LL
	LH525C2T)
Model No.	
	ins 15 pages including the cover and appendix. s, please contact us before issuing purchasing order.
CUSTOMERS ACCEPTANCE	9. 25'96. * MAIL DATE *
DATE:	PRSENTED GFOUR
BAY:	BY: T. Kuyumoto
-	T.KUZUMOTO Dept. General Manager
	REVIEWED BY: PREPARED BY:
	Hibahi 74. Ragai
	Engineering Dept.2 Memory IC Engineering Center Tenri Integrated Circuits Group SHARP CORPORATION

LH525C2T

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - · Instrumentation and measuring equipment
 - Machine tools
 - · Audiovisual equipment
 - · Home appliances
 - · Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-sale operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - · Traffic control systems
 - · Gas leak detectors and automatic cutoff devices
 - · Rescue and security equipment
 - · Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - · Aerospace equipment
 - · Communications equipment for trunk lines
 - · Control equipment for the nuclear power industry
 - · Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

.

LH525C2T

	Contents
1.	Description
2.	Pin Configuration
3.	Truth Table
4.	Block Diagram
5.	Absolute Maximum Ratings
6.	Recommended DC Operating Conditions
7.	DC Electrical Characteristics
8.	AC Electrical Characteristics · · · · · · · · · · · · · · · · 5
9.	Data Retention Characteristics
10.	Pin Capacitance
11.	Timing Chart
12.	Package and Packing Specification

.

LH525C2T

1.Decription

The LH52256CHT-85LL is a static RAM organized as 32, 768×8 bit with provides low-power standby mode.

It is fabricated using silicon-gate CMOS process technology.

Features

OAccess Time	• • • •	85 n s (Max.)
O0perating current		40 mA (Max.)
		10 mA (Max. trc. twc=1 μ s)
OStandby current		40 μ A (Max.)
OData retention current	• • • •	1.0 μ A (Max. V c c D R = 3 V, Ta = 2 5 °C)
○Wide operating voltage range		4.5V to 5.5V
Operating temperature	• • • •	−40℃ to +85℃
OFully static operation		
OThree-state output		

ONot designed or rated as radiation hardened

 \bigcirc 2 8 pin TSOP (TSOP 2 8 - P - 0 8 1 3) plastic package

ON-type bulk silicon

2. Pin-Configuration

				-
$ \begin{array}{c c} \hline OE \\ A & 11 \\ A & 9 \\ \hline A & 8 \\ \hline A & 8 \\ \hline A & 13 \\ \hline WE \\ \hline V & CC \\ \hline A & 14 \\ \hline A & 12 \\ \hline \end{array} $	1 () 2 3 4 5 6 7 8 9	(Top View)	28 27 26 25 24 23 22 21 20 19	$\begin{array}{c c} A & 10 \\ \hline C E \\ \hline I / O s \\ \hline I $
V cc A 14 A 12 A 7 A 6	7 8	(Top View)	22 21	I/O 4 GND
$\begin{array}{c c} A & 5 \\ \hline A & 4 \\ \hline \Delta & 2 \\ \end{array}$	12 13 14		16 15	$ \begin{array}{c} A \\ A \\ A \\ A \\ A \\ \end{array} $

Pin Name	Function
Ao to A14	Address inputs
CE	Chip enable
WE	Write enable
ŌĒ	Output enable
I/OitoI/Os	Data inputs/outputs
Vcc	Power supply
GND	Ground

,

LH525C2T

3. Truth Table

ΟĒ

CE

(1

(27

CE	WE	ŌĒ	Mode	I /O 1 to I /O 8	Supply current
Н	*	*	Standby	High impedance	Standby (Ism)
L	Н	L	Read	Data output	Active (I cc)
L	Н	Н	Output disable	High impedance	Active (I cc)
L	L	*	Write	Data Input	Active (I cc)

(*****=Don't Care, L=Low, H=High) 4. Block Diagram A 8 (4) A 14 (8)A 13 (5 7) V c c A 12 (9) Memory Row (21) G N D Array A 7 (10)Decorder (512×512) A 6 (11)A 5 (12)18 I/Oı A 4 (13)A 3 (14) <u>19</u> I/O 2 20) I/O 3 8, (2) I/O 4 Output Column I/O Buffers (2) I/O ₅ Circuit K7 8 Column (24) I/O 6 Decorder ∑5 I/O7 -26) I/Os Input Data Control WE (6)

> 17-16-15-28-3-2 A 0 A 1 A 2 A 10 A 9 A 11

٠

L H 5 2 5 C 2 T

5. Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage (*1)	Vcc	-0.5 to $+7.0$	v
Input voltage (*1)	VIN	-0.5 (*2) to Vcc+0.5	V
Operating temperature	Topr	-40 to $+85$	C
Storage temperature	Tstg	-65 to $+150$	r

Note) *1. The maximum applicable voltage on any pin with respect to GND.
*2. Undershoot of -3. OV is allowed width of pluse bellow 50ns.

6. Recommended DC Operating Conditions

 $(T_a = -40 \ C \ to + 85)$

Parameter	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Input voltage	VIH	2.2		Vcc+0.5	V
	VIL	- 0.5 (*3)		0.8	V

Note) *3. Undershoot of -3.0V is allowed width of pluse below 50ns.

7. DC Electrical Characteristics

 $(T_a = -4 \ 0 \ C \ to \ +8 \ 5, V_{cc} = 4.5 \ V \ to \ 5.5 \ V)$

Parameter	Symbol	Conditions	Min.	Typ. (*4)	Max.	Unit
Input leakage	ILI	$V_{IN} = OV$ to V_{CC}				
current			-1.0		1.0	μΑ
Output leakage	ILO	CE =VIH or OE =VIH				
current		V _{I/0} =OV to V _{cc}	-1.0		1.0	μΑ
Operating	Icc	Minimum cycle				
supply		$V_{1N} = V_{1L}$ or V_{1H} , $I_{1/0} = OmA$, $\overline{CE} = V_{1L}$		25	4 0	mA
current	Iccı	trc, two =1 μ s				
	[$V_{IN} = V_{IL}$ or V_{IH} , $I_{I/0} = OmA$, $\overline{CE} = V_{IL}$			1 0	mA
Standby	Іѕв	$\overline{CE} \ge V_{cc} - 0.2V$		0.6	4 0	μΑ
current	I sbi	CE =VtH			3	mA
Output	Vol	Iol= 2.1mA			0.4	V
voltage	Vон	Іон=-1. ОшА	2.4			V

Note) *4. Typical values at Vcc=5.0V, Ta= 25° C.

.

8. AC Electrical Characteristics

AC Test Conditions

Input pulse level	0.6V to 2.4V
Input rise and fall time	1 0 n s
Input and Output timing Ref. level	1.5 V
Output load	$1 TTL + C_{L} (1 0 0 p F) (*5)$

Note) *****5. Including scope and jig capacitance.

Read cycle

 $(Ta\!=\!-4~0\,\ensuremath{\mathbb{C}}$ to $+\,8\,\,5$,Vcc=4.5V to 5.5V)

Parameter	Symbol	Min.	Max.	Unit	
Read cycle time	trc	8 5		пѕ	1
Address access time	t A A		85	ns	
CE access time	t ACE		85	ns	
Output enable to output valid	toe		3 5	ns	
Output hold from address change	tон	10		ns	
CE Low to output active	tız	1 0		ns	*
-OE Low to output active -	torz	5		ns	*
CE High to output in High impedance	tнz	0	30	ns	*
OE High to output in High impedance	tонz	0	3 0	ns] *

Write cycle

 $(T_a = - \ 4 \ 0 \ \ C \ \ to \ + \ 8 \ 5 \ \ Vcc = \ 4 \ . \ 5 \ \ V \ \ to \ \ 5 \ . \ 5 \ \ V)$

Parameter	Symbol	Min.	Max.	Unit
Write cycle time	twc	8 5		ns
CE Low to end of write	tcw	55		ns
Address valid to end of write	taw	5 5		ns
Address setup time	t a s	0		ns
Write pluse width	twp	4 0		ns
Write recovery time	twr	0		ns
Input data setup time	tow	30		ns
Input data hold time	tDH	0		ns
WE High to output active	tow	5		ns
WE Low to output in High impedance	twz	0	3 0	ns
OE High to output in High impedance	tонz	0	30	ns

Note) *6. Active output to High impedance and High impedance to output active tests specified for a ±200mV transition from steady state levels into the test load.

•

SHARP

LH525C2T

9. Data Retention Characteristics

(Ta= − 4 0 ℃	C to + 85)
--------------	------------

Paramenter	Symbol	Conditions		Min.	Typ. (*7)	Max.	Unit
Data Retention	VCCDR	$\overline{CE} \ge V_{CCDR} - 0.2V$					
supply voltage				2.0		5.5	V
Data Retention	ICCDR	V CCDR = 3 V T a =	= 2 5 °C		0.3	1.0	μΑ
supply current		T a =	=70℃			15	μA
		$\overline{CE} \ge V_{CCDR} - 0.2 V (*5)$				20	μΑ
Chip enable	t cdr						
setup time				0			ns
Chip enable	tr			(*8)			
hold time				trc			ns

Note) *****7. Typical values at Ta=25℃

*****8. Read Cycle

10. Pin Capacitance

.

$(T_a = 25$ °C, f = 1 M H z)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit	
Input capacitance	Cin	$V_{IN} = 0 V$			7	pF	*
I/O capacitance	C1/0	$V_{I/O} = 0 V$			1 0	pF	*

Note) *****9. This parameter is sampled and not production tested.

LH525C2T

SHARP

LH525C2T

SHARP

. •

LH525C2T

•

-

4. Storage	e and Opening of D	ry Packing	
-		ons shown below before opening the dry packin	g
	1) Temperature r		
C	2) Humidity	: 80% RH or less	
	otes on opening th	•	
()		g the dry packing, prepare a working table wh	iich is
(-	nst ESD and use a grounding strap. been treated to be conductive or anti-static.	If the
•		nsferred to another tray, use a equivalent tr	
4 - 3. St	orage after openi	ng the dry packing	
		ng to prevent absorption of moisture after op	
(,	the dry packing, store the ICs in an environ	
	-	f $5 \sim 25^{\circ}$ and a relative humidity of 60% or	less and
	mount IUS wit	hin 3 days after opening dry packing.	
4-4. Ba	aking (drying) bef	ore mounting	
(1) Baking is nec		• •
-		humidity indicator in the desiccant becomes proceeding is section $4-2$ could not be performed.	
((B) If the 2) Recommended b	procedure in section $4-3$ could not be perfor	шец
()		conditions (A) and (B) are applicable, bake i	t before
		recommended conditions are $16-24$ hours at 12	
	Heat resistan	ce tray is used for shipping tray.	
5. Surface	Mount Conditions		
PI	lease perform the	following conditions when mounting ICs not to	o deteriorate IC
qu	uality.		
5 — 1 .Sol	ldering conditions	(The following conditions are valid only for	one time soldering
Γ	Mounting Method	Temperature and Duration	Measurement Poin
	Reflow_soldering	Peak temperature of 230℃ or less,	IC surface
	(air)	duration less than 15 seconds.	
		200°C or over, duration less than 40 seconds	•
-	M 1 11	Temperature increase rate of $1 \sim 4^{\circ}C/second$	IC outer lead
1	Manual soldering	260℃ or less, duration less than 10 seconds	surface
	(soldering iron)	inait to seconds	_ Sui iace
ļ			
5-2. Co	onditions for remo	oval of residual flux	
-	onditions for remo 1) Ultrasonic wa		

名称 NAME TSOP28-0813TCM-RH NOTE

•

- interior -

.

-

13

.

STATIC SRAM RAM Random Access Memory Low Power Industrial Temp TSOP LH52256CHT-85LL 256K (32K x 8)