•

	SPEC No. E L 0 9 5 1 2 4 ISSUE: Jun. 3. 1997
<u>To;</u>	
SPECI	FICATIONS
Product Type	256 k SRAM
	256CH-85LL
Model No(
	ns <u>15</u> pages including the cover and appendix. please contact us before issuing nurchasing order. <u>6. 16'97.</u> <u>MAIL DATEO</u> PRESENTED
BY:	BY: T. KUZUMOTO
	Dept. General Manager
	REVIEWED BY: PREPARED BY: <u>H. Ashilashi 74. Ragai</u>
	Engineering Dept.2 Memory IC Engineering Center Tenri Integrated Circuits Group SHARP CORPORATION

LH525CL2

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - · Audiovisual equipment
 - Home appliances
 - \cdot Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-sale operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - · Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - · Communications equipment for trunk lines
 - · Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4)Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

1. Description The LH52256CH-85LL is a static RAM organized as 32, 768×8 bit with provides low-power standby mode. It is fabricated using silicon-gate CMOS process technology. Features OAccess Time 85 ns (Max.) 40 mA (Max.) O0perating current 10 mA (Max. trc. twc= 1μ s) $40 \mu A$ (Max.) OStandby current 1.0 μ A (Max. V c c D R = 3 V, Ta = 25°C) OData retention current 4.5 V to 5.5 V Ownide operating voltage range O0perating temperature -40°C to +85°C OFully static operation OThree-state output ONot designed or rated as radiation hardened \bigcirc 2 8 pin DIP (DIP 2 8 - P - 6 0 0) plastic package ON-type bulk silicon 2. Pin Configuration A14 🗖 10 28 🗖 Vcc A12 2 27 🗀 WE A 13 26 A7 🖂 3 A 6 d 25 🗀 As 24 🟳 A9 A 5 🗖 5 $\frac{||}{||} \frac{A_{11}}{OE}$ A₄ ⊏ 6 23 7 22 A 3 🗆 □ A 10 A 2 🗆 8 21 A1 🗆 9 20 ☐ I/O 8 10 A o 🗆 19 □ I/O 7 - 11 I/0 1 🗆 18 □ I/O 6 12 17 I/O 2 🗆 I/O 3 🗖 13 16 I/Os GND 🗖 14 15 I/O4 (Top View) Function Pin Name Address inputs Ao to A14 Chip enable СE Write enable WE Output enable ΟE Data inputs/outputs I /O 1 to I /O 8 Power supply Vcc Ground GND

5. Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage (*1)	Vcc	-0.5 to $+7.0$	V
Input voltage (*1)	VIN	-0.5 (*2) to Vcc+0.5	V
Operating temperature	Topr	-40 to $+85$	Ĉ
Storage temperature	Tstg	-65 to $+150$	Ĉ

Note) *1. The maximum applicable voltage on any pin with respect to GND.
*2. Undershoot of -3. OV is allowed width of pluse bellow 50ns.

6. Recommended DC Operating Conditions

 $(T_{a}= -40 \ C \ to + 85 \ C)$

			•		
Parameter	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V
Input voltage	VIH	2.2		Vcc+0.5	V
	VIL	-0.5 (*3)		0.8	V

Note) *3.Undershoot of -3.0V is allowed width of pluse below 50ns.

7. DC Electrical Characteristics

 $(T_a = -4 \ 0 \ C \ to \ +8 \ 5 \ C, V_{CC} = \ 4.5 \ V \ to \ 5.5 \ V)$

Parameter	Symbol	Conditions	Min.	Typ. (*4)	Max.	Unit
Input leakage	ILI	V _{IN} =OV to Vcc				
current			-1.0		1.0	μΑ
Output leakage	ILO	CE =VIH or OE =VIH				
current		V _{1/0} =OV to V _{cc}	- 1.0		1.0	μA
Operating	Icc	Minimum cycle				
supply		$V_{IN} = V_{IL}$ or V_{IH} , $I_{I/0} = OmA$, $\overline{CE} = V_{IL}$		25	4 0	mA
current	Iccı	trc, trc = 1 μ s				
		$V_{IN} = V_{IL}$ or V_{IH} , $I_{I/0} = OmA$, $\overline{CE} = V_{IL}$			1 0	mA
Standby	Isв	$\overline{CE} \ge V_{cc} - 0.2V$		0.6	40	μΑ
current	ISB1	CE =VIH			3	mA
Output	Vol	Iol= 2.1mA			0.4	V
voltage	Vон	I _{он} =-1. О m А	2.4			V

Note) *4. Typical values at Vcc=5.0V, Ta=25°C.

8. AC Electrical Characteristics

AC Test Conditions

Input pulse level	0.6V to 2.4V			
Input rise and fall time	1 0 n s			
Input and Output timing Ref. level	1.5V			
Output load	$1 T T L + C_L (1 0 0 p F) (* 5)$			

Note) *5. Including scope and jig capacitance.

Read cycle

 $(Ta=-\;4\;0\;\ensuremath{\mathbb{C}}$ to $+\;8\;5\;\ensuremath{\mathbb{C}}$, Vcc= $\;4\;.5\;V$ to $\;5\;.5\;V$)

Parameter	Symbol	Min.	Max.	Unit
Read cycle time	trc	85		ns
Address access time	t a a		85	ns
CE access time	TACE	· · · · · ·	85	ns
Output enable to output valid	toe		35	ns
Output hold from address change	tон	10		ns
CE Low to output active	tlz	10		ns
OE Low to output active	tolz	5		ns
CE High to output in High impedance	tнz	0	30	ns
OE High to output in High impedance	tонz	0	30	ns

Write cycle

 $(T_a = -4 \ 0 \ C \ to \ +8 \ 5 \ C$, Vcc = 4.5 V to 5.5 V)

Parameter	Symbol	Min.	Max.	Unit
Write cycle time	twc	85		ns
CE Low to end of write	tcw	55		ns
Address valid to end of write	t aw	55		ns
Address setup time	tas	0		ns
Write pluse width	twp	4 0		ns
Write recovery time	twr	0		ns
Input data setup time	tow	30		ns
Input data hold time	t DH	0		ns
WE High to output active	tow	5		ns
WE Low to output in High impedance	twz	0	30	ns
OE High to output in High impedance	tонz	0	3 0	ns

Note) *6. Active output to High impedance and High impedance to output active tests specified for a ± 200 mV transition from steady state levels into the test load.

L H 5 2 5 C L 2

9. Data Retention Characteristics

				(Ta=	-40°C	to + 8	35℃)
Paramenter	Symbol	Conditions		Min.	Typ. (*7)	Max.	Unit
Data Retention supply voltage	VCCDR	$\overline{CE} \ge V_{CCDR} - 0.2V$	I	2.0		5.5	v
Data Retention supply current	ICCDR	$V_{CCDR} = 3 V$	T a = 2 5 °C $T a = 7 0 °C$		0.3	1.0 15	μ A μ A
Chip enable	tcdr	$\overline{CE} \ge V_{CCDR} - 0.2V$	/ (*5)			2 0	μΑ
setup time				0			ns
Chip enable hold time	tr			(* 8) trc			ns

Note) * 7. Typical values at Ta=25 °C

★ 8. Read Cycle

10. Pin Capacitance

$(T_a = 25$ °C, f = 1 M H z)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit	
Input capacitance	Сіл	$V_{IN} = 0 V$	1		7	рF	*9
I/O capacitance	C1/0	$V_{I/0} = 0 V$			1 0	рF	*9

Note) *9. This parameter is sampled and not production tested.

LH525CL2

L H 5 2 5 C L 2

5. Surface Mount Conditions

Please perform the following conditions when mounting ICs not to deteriorate IC quality.

5-1 .Soldering conditions (The following conditions are valid only for one time soldering.)

Mounting Method	Temperature and Duration	Measurement Point
Solder dipping	245°C or less, duration of less than 3 seconds/dip, total of 5 seconds. (Only the appropriate parts of leads for soldering are immersed in the surface of a jet stream solder bath. During soldering, the solder stream must not come into direct contact with the plastic body of package.)	Solder bath.
Manual soldering (soldering iron)	260°C or less, duration of less than 10 seconds. (Only the appropriate parts of leads for soldering are soldered with a soldering iron. During soldering, the soldering iron must not come into direct contact with the plastic body of package.)	IC outer lead surface.

Static SRAM RAM Random Access Memory LH52256CH-85LL 256K (32Kx8) (85 ns) (DIP)